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Abstract—Mobile developers use OAuth APIs to implement
Single-Sign-On services. However, the OAuth protocol was origi-
nally designed for the authorization for third-party websites not
to authenticate users in third-party mobile apps. As a result, it is
challenging for developers to correctly implement mobile OAuth
securely. These vulnerabilities due to the misunderstanding of
OAuth and inexperience of developers could lead to data leakage
and account breach. In this paper, we perform an empirical study
on the usage of OAuth APIs in Android applications and their
security implications. In particular, we develop OAUTHLINT, that
incorporates a query-driven static analysis to automatically check
programs on the Google Play marketplace. OAUTHLINT takes as
input an anti-protocol that encodes a vulnerable pattern extracted
from the OAuth specifications and a program P . Our tool then
generates a counter-example if the anti-protocol can match a
trace of P s possible executions. To evaluate the effectiveness of
our approach, we perform a systematic study on 600+ popular
apps which have more than 10 millions of downloads. The
evaluation shows that 101 (32%) out of 316 applications that
use OAuth APIs make at least one security mistake.

Index Terms—Security, OAuth, Android, Static Analysis, Bug
Finding

I. INTRODUCTION

The OAuth protocol has been widely used for mobile

developers to implement Single-Sign-On services. For exam-

ple, many mobile game developers use OAuth to implement

authentication with user’s major accounts in Google, Twitter,

or Facebook. However, the OAuth protocol was originally

designed for the authorization for third-party websites in 2009,

not to authenticate users in third-party mobile apps. Since the

security implications for authentication and authorization are

fundamentally different, and mobile platforms have different

security schemes comparing to the browsers, it is challenging

for developers to implement the OAuth protocols in mobile

platforms securely.

Recent years, many widespread attacks for the OAuth

implementation in popular mobile applications have been

reported, causing users to lose their accounts or information.

For example, Facebook has a bug for the insecure storage of

OAuth tokens, which exposes a large number of user accounts

to attackers [1]. Studying such a critical and popular multi-

party protocol will also provide insight for building other

multi-party protocols securely.

Due to the complexity of the OAuth protocol, it is chal-

lenging to implement it in a secure way. In particular, there

are three parties in OAuth: the user who owns protected

resources, the service provider that hosts the user’s services,

and the relying party that uses the service provider to get

access to the user’s resources or authenticate the user. During

authorization, the three parties need to verify each other’s

identity and synchronize their secure states. However, despite

wide deployment, the OAuth protocol is still too complicated

for most developers to follow. For example, as we mentioned

earlier, OAuth was first designed for authorization, but not

for authentication. Therefore, the use case for authentication

is not clearly defined in the original specification. As a

result, developers may misunderstand the threat model and

security implications in OAuth, which leads to vulnerabilities

that compromise user privacy. In the meantime, the original

OAuth 1.0 protocol [2] was first proposed for websites, and

then got widely used in mobile applications. However, many

security schemes cannot be directly mapped from the web

to mobile platforms. Therefore, mobile application developers

make many mistakes [3] for using the OAuth protocol.

Although an OAuth protocol typically involves multi-parties

(i.e., user, relying party, and service provider), in this paper,

we mainly focus on studying bugs in the relying parties

and developing techniques for automatically finding those

bugs. The ultimate goal is to provide a tool for helping

developers to write secure authentication using the OAuth

protocol. We focus on the relying parties for several reasons.

First, comparing to the very few identity providers such as

Google or Facebook, there are tens of thousands of relying

parties in Android platforms and the developers of the relying

parties contribute a majority of the common mistakes in using

the OAuth protocol [3]. As a result, it is important to develop

tools for helping numerous relying parties to check the security

of their OAuth implementations. Second, mobile applications

of most of the relying parties are publicly available through

Google Play store. In contrast, the implementations of most of

the identity providers are not available to us and we can only

approximate their behaviors through black-box testing [4].

Previous studies [3], [5], [6] have identified many security

issues of the mobile OAuth implementations by manual or

semi-automatic analyses. However, the entire process is very
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time-consuming and error-prone as it requires security experts

with domain knowledge in OAuth to inspect the implementa-

tions manually. On the other hand, there are several challenges

for automatically finding OAuth vulnerabilities in Android

platforms. First, verifying OAuth implementation requires

precisely modeling the data- and control-properties of mobile

applications which are highly asynchronous and interactive.

Second, to precisely reason about the OAuth vulnerabilities in

mobile applications, our system has to consider the interactions

among multiple parties (i.e., Service Provider, Relying Party,

SDK, etc) and the majority of their implementations are not

available. Finally, a system would need a specification for

finding the OAuth vulnerabilities, however, the specification

of the latest OAuth 2.0 protocol [7] has over 75 pages which

are extremely difficult to digest by developers.

To understand the OAuth vulnerabilities in relying parties

and help mobile developers to write secure code using OAuth,

we perform the first empirical and systematic study on 600+

popular Android applications from Google Play. In particular,

we propose OAUTHLINT, the first static analyzer for checking

anti-protocols (i.e., vulnerabilities) in OAuth implementation.

First, we present a simple but effective query language for

describing common anti-protocols in OAuth implementations.

Here, each anti-protocol is a class of vulnerabilities in OAuth

implementation. Second, we perform a thorough study on

specifications of the existing OAuth protocols and summarize

five common anti-protocols. Third, given an anti-protocol

expressed in our query language, we leverage a fully-automatic

and demand-driven static analysis to identify the anti-protocols

that appear in the Android applications from the relying

parties. Formally speaking, an anti-protocol π for program

P is true iff π matches a trace of P ′s possible executions.

Our system will return a counter-example if the specified anti-

protocol configuration is feasible in the application.

Most of the anti-protocols that we check are logical flaws

due to the misunderstanding of the OAuth protocol. Because

of the misunderstanding of the security implications of the

OAuth protocol, the developers can make logical errors that

compromise user privacy. For example, in the OAuth 2.0

implicit flow, the bearer token represents that a user grants a

set of permissions to an application. By its design, the bearer
token is bound to the user and the set of permissions, but

not to the application. Therefore, if developers just verify the

bearer token, it’s not secure to authenticate the user because

a malicious application might get the bearer token and reuse

it in the OAuth process of another application to gain access

to the user’s account.

To evaluate the effectiveness of our approach, we perform

a systematic study on 600+ popular applications which have

more than 10 millions of downloads. Our evaluation shows

that for those popular apps that use OAuth API, more than

32% of them contain at least one anti-protocol. For those

anti-protocols identified by OAUTHLINT, we also reported

them to the developers of corresponding mobile applications

and get acknowledged by companies such as WordPress and

GoFundMe.

User

2. Req Token
3. Req Token

4. User grants permission

5. Req Token 
6. [Req Token]

7. Access Token

8. [Access token]*

9. Protected resource

Verifies signature

Verifies signature

Verifies signature

1. [App ID, Resource_type ]

Service Provider Relying Party

* the secret is only known 
between the relying party 
and service provider

Relying party’s web server

Fig. 1: Overview of OAuth 1.0.

Contributions. In summary, this paper makes the following

key contributions:

• We devise a simple but effective query language for

expressing common anti-protocols that violate the OAuth

specification.

• We propose five anti-protocols that widely appear in the

implementations of relying parties.

• Given an anti-protocol expressed in our query language,

we design a demand- and query-driven static analysis for

checking violations in the mobile applications from the

relying parties.

• We implement our proposed ideas in OAUTHLINT, and

evaluate it on over 600 popular applications from Google

Play. Our result shows that more than 32% of the appli-

cations contain at least one anti-protocol.

II. BACKGROUND

The concept of OAuth protocol was proposed in 2007 and

was designed as an authorization protocol which contains two

major OAuth versions that are currently deployed: OAuth 1.0

and 2.0. The first version of the OAuth protocol (OAuth 1.0)

was published in April 2010 [8]. Since then, the protocol has

gone through a few revisions. The most notable changes to the

protocol were released as the OAuth 2.0 framework in October

2012 [9].

A. OAuth 1.0

OAuth 1.0 was released for around 10 years, however, some

service providers such as Twitter are still using OAuth 1.0 [10].

We illustrate the OAuth 1.0 protocol flow in Fig. 1. The

dashed lines in our figures for OAuth represent redirection and

solid lines represent direct server-to-server API calls (e.g., a

REST API call). Also, parameters inside square brackets are

signed using shared secrets.

We summarize the OAuth 1.0 flow in the following:

• Initialization: Relying party developers will need to reg-

ister with the service provider and obtain shared secrets

(consumer secret and consumer key). The shared secrets

will be used in the following steps to sign packets and

verify the signatures.

• Unauthorized request token (Step 1,2): First, the rely-

ing party gets a request token from the service provider

using a direct server-to-server call.

294



• Authorized request token (Step 3-5): Then, the relying

party redirects the user to the service provider (in mobile

devices, it is done by inter-process communication such

as Intent in Android) with the request token as a URI

parameter. Then, the user grants the relying party access

to their protected resource and is redirected back to the

relying party.

• Access token (Step 6,7): With the request token autho-

rized, the relying party can exchange the request token

for an access token using another direct server-to-server

call with the service provider. Note that these two steps

are very critical for the security of OAuth 1.0. The relying

party needs to sign the packet with the shared secret

(consumer secret/key) and the service provider needs to

verify the signature to check the identity of the relying

party.

• Protected resource (Step 8,9): Finally, the relying party

can use the access token to obtain the users protected

resource.

B. OAuth 2.0

Instead of building on top of the existing OAuth 1.0 proto-

col, the working group changed the specification completely

to create a different protocol, known as OAuth 2.0.

Compared to OAuth 1.0, OAuth 2.0 removed obtaining

the shared secrets and providing signature as mandatory pro-

cesses. Instead, OAuth 2.0 introduced the concept of bearer
token [11]. For the bearer token, a users access token was

no longer bound to a relying party; any party with this token

could access the users protected resource.

In addition, OAuth 2.0 also offers four different flows, these

methods are referred to as grants and they can be viewed as

different “versions of OAuth 2.0. Out of the four OAuth grants,

the most popular one is the implicit grant.

In the following, we will use Fig 2 to explain the most

popular implicit grant of OAuth 2.0 [9].

The implicit grant is the shortest of all OAuth 2.0 flows.

It consists of two steps. First, the user is redirected to the

service provider to grant the relying party access to his/her

protected resource. After the user grants the permission, the

service provider redirects the user back to the relying party

along with an access token as a parameter in the URI. The

relying party can then use this access token to exchange for

the users resource. Besides the implicit grant, we find that the

authorization code grant is also used in mobile applications

we studied. Comparing to the implicit grant, the authorization

code grant has additional steps for the relying party to obtain

an authorization code and then use the authorization code to

exchange for the token.

There are two important differences in the implicit grant

comparing to other OAuth flows. First, with exception to the

final protected resource request, every message in the protocol

is exchanged through the user agent (e.g., using browser

redirection or Android Intent). Second, the implicit grant does

not require the relying party to present a shared secret to the

User Service Provider Relying Party

2. User grants 
permission

3. Access token

4. Access token

5. Protected resource

1. App ID, Resource_type, redirect URI

Verifies 
redirect URI * *The receiver of the access 

token must be the same as 
the registered redirect URI

Browser redirection 
(HTTP 302)

Fig. 2: Overview of OAuth 2.0.

Secret 
Tokens

Android 
APK

Taint
Analysis

Points-To
Analysis

Program
Facts

 

OAuthLint

 

Secret 

Callgraph

Callgraph

Taint ow

Anti-protocols
in OAuth

 

Andddroid

Fig. 3: Overview of OAUTHLINT.

service provider. This is ideal for the mobile environment,

where the relying party resides on an untrusted device.

C. Using OAuth for authentication

Although OAuth is originally designed for authorization,

developers re-purposed it for authentication. Therefore, the

way to do authentication using OAuth is never documented

in the OAuth standard protocol and developers have to figure

out their own ways to run the authentication using OAuth.

Typically, they just changed the last step of the OAuth pro-

tocol, using the user’s resources to identify the user. Some

service providers such as Google and Facebook recognized

the limitation of using OAuth for authentication and propose

additional steps of verification to improve the security, such

as the appsecret proof [12].

III. OVERVIEW

In this section, we give an overview of our approach with

the aid of a motivating example, and then summarize the threat

model in our system.

A. System overview

Fig. 3 gives a high-level overview of OAUTHLINT’s ar-

chitecture. In particular, OAUTHLINT incorporates standard

pointer and taint analyses to explicitly track sensitive informa-

tion (e.g., secret keys, access tokens, etc.) in OAuth protocols.

a) Pointer analysis: Given the source code or bytecode

of an Android application, OAUTHLINT leverages FLOW-

DROID [13] to perform (field- and object-sensitive) pointer

analysis to build a precise call graph and identify all variables

that may be an alias to each other. The call graph and alias
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information are further used by the subsequent taint analysis

for generating additional program facts that are relevant to

answering the anti-protocols in OAuth.

b) Taint analysis: The taint analyzer leverages the anno-

tations in OAUTHLINT’s configuration file to determine taint

sources (i.e., secret keys and access tokens) and propagates

them using a field- and object-sensitive analysis. Intuitively, a

taint flow encodes that a sensitive field (e.g., secret keys) may

flow to an untrusted resource (e.g., local storage, WebView,

etc.).

c) Anti-protocols for OAuth: To find logical flaws due

to the misunderstanding of the OAuth protocol, OAUTHLINT

first proposes a query language that enables developers to spec-

ify anti-protocols. These anti-protocols represent the OAuth-

implementation mistakes by developers that may result in

severe vulnerabilities such as impersonation attack and users’

privacy violation. Here, each anti-protocol is expressed as a

logical formula which encodes a class of vulnerabilities that

compromise user’s security and privacy. Section V includes

detailed explanation and security impacts of five anti-protocols

that widely appear in existing Android apps in Google Play

Store. While we propose five anti-protocols using the query

language in OAUTHLINT, a security expert can come up

with more anti-protocols based on her insight on the standard

OAuth specifications. After that, using the program facts

generated by our previous analyses, OAUTHLINT leverages a

fully-automatic and demand-driven static analysis for checking

whether there exists an execution trace such that the anti-

protocol holds. If so, a violation will be reported to the

developer.

For instance, TikTok, a very popular app for creating and

sharing short videos, has over 500 million installs by the

time of our submission. To integrate the user accounts from

service providers such as Facebook, Instagram, and Google,

TikTok implements the standard authentication flow using the

OAuth 2.0 protocol [9]. However, after running OAUTHLINT

on TikTok, we found the application contains multiple logical

flaws in their implementation for the OAuth protocol.

Firstly, TikTok bundles its consumer key and secret within

the application code. The following code snippet from TikTok
represents one of the most common ways that developers use

to bundle their secrets:

1 final String CONSUMER_KEY =
2 "YYWjeT***...";
3 final String CONSUMER_SERECT =
4 "w981H5bEd***...";
5 ...

According to the specification in OAuth 1.0 [8], the con-

sumer secrets or keys should never be bundled in the clients.

The reasons are as follows: first, the consumer secrets are

highly sensitive information shared between service providers

and relying parties, and service providers will use consumer

keys to verify identities of the relying parties. Second, all

mobiles devices are technically untrusted, which means that

an attacker could extract the consumer secrets through reverse

engineering and impersonate a benign replying parties to get

access to users’ information.

Moreover, TikTok embeds a WebView to retrieve the ac-

cess token attached with the redirect URL from Twitter and

Instagram.

1 String url = "provider.com/..?
2 client_id=".."
3 &redirect_url=".."
4 &response=token";
5 ...
6 webView.loadUrl(url);
7

8 void onPageStarted(String url){
9 String token = parseToken(url);

10 }

When an application hosts service provider’s website inside

a Webview, it gets full access to the information such as

users’ cookies. Therefore, using WebView for OAuth enables a

malicious relying party app to log into a victim user’s account

with the service provider. This is due to the fundamental design

of isolation in WebView and there is no way for the service

provider to protect herself when it was loaded in WebView.

Often service providers use long term cookies, which makes

such vulnerability persistent.

Furthermore, OAUTHLINT also detects that TikTok ex-

changes its access token with service providers to fetch the

corresponding userId for login purpose.

1 String user_id = fetchUserInfo(token
2 , consumer_secret);
3 storeInSharedPreferences(user_id
4 , token);
5 ...
6 authorizeUserLogin(user_id);//login

This approach is also vulnerable because any requests made

from a client could be potentially tampered by an attacker.

Hence, for authentication using OAuth, client devices should

not be trusted. According to OAuth 1.0 and 2.0, a secure

authentication should be made through server-to-server calls.

Finally, after obtaining the userId, TikTok stores both userId

and access token as plain text in the SharedPreferences.

Here, there are multiple security issues. First, information

stored in SharedPreferences is insecure, since they can easily

be accessed by another malicious application in a rooted

device or emulator. Hence, any sensitive information should

not be stored in SharedPreferences. Second, storing sensitive

information such as access token as plain text is insecure.

According to the suggestion from OAuth 1.0 and 2.0, the

access tokens should be encrypted and stored on the server

side of the relying party.

We have reported all the above-mentioned flaws to TikTok’s

security team and they are still working on those issues by the

time of this submission.
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B. Threat Model

In this paper, we focus on the vulnerabilities in the design

and implementation of the relying parties for using OAuth

protocols. We assume the service providers are trusted and

correctly implement the security schemes for OAuth. For

the attacks to authentication, we consider the case where an

attacker has the capability of accessing the mobile apps on

behalf of the victims. For the attacks to authorization, we

consider the case where malicious relying parties seek to

access user’s data without consensus.

IV. ANALYSIS

This section describes OAUTHLINT’s static analyses for

computing an over-approximation of some built-in predicates

that encode the data- and control-dependency of a program.

In what follows, we first give some background on Datalog,

and then describe the syntax and semantics of OAUTHLINT’s

built-in predicates.

A. Datalog Preliminaries

A Datalog program consists of a set of rules and a set of

facts. Facts simply declare predicates that evaluate to true. For

example, parent("Bill", "Mary") states that Bill is a

parent of Mary. Each Datalog rule is a Horn clause defining

a predicate as a conjunction of other predicates. For example,

the rule:

ancestor(x, y) :- parent(x, z), ancestor(z, y).

says that ancestor(x, y) is true if both parent(x, z)
and ancestor(z, y) are true. In addition to variables,

predicates can also contain constants, which are surrounded

by double quotes, or “don’t cares”, denoted by underscores.

Datalog predicates naturally represent relations. Specifically,

if tuple (x, y, z) is in relation A, this means the predicate

A(x, y, z) is true. In what follows, we write the type of a

relation R ⊆ X × Y × . . . as (s1 : X, s2 : Y, . . .), where s1,

s2, . . . are descriptive texts for the corresponding domains.

Base Facts. The base facts of our inference engine describe

the instructions in the application’s control-flow graph (CFG).

The base facts take the form of A(y, x1, ..., xn), where A is the

instruction name, y is the variable storing the instruction result

(if any), and x1, ..., xn are variables given to the instruction

as arguments (if any). For example, the instruction r1 = 0
is encoded to assign(r1, 0). Further, the special local store

instruction lstore(d, v) denotes that the value of v is stored

in location d.

Flow-to Predicates. The flowTo predicate is defined

over pairs of variables and is inferred from the application’s

CFG. The intuitive meaning (also summarized in Fig. 4) is:

flowTo(x1, x2) holds for x1 and x2 if the value of variable x2

depends on the value of x1.

OAuth-specific Predicates. In addition to base facts from

programs, OAUTHLINT also defines a list of predicates that

are specific to the OAuth domain. As shown in Fig. 5,

isToken(x) denotes that x may be an access token.

FlowTo(x, y) : − alloc(y, x)
FlowTo(x, y) : − assign(y, x)
FlowTo(x, z) : − assign(y, x),FlowTo(y, z)
FlowTo(x, z) : − alias(y, z),FlowTo(x, y)

Fig. 4: Rules for computing the Flow-to predicate. Here, the

alias predicate alias is directly obtained from FLOWDROID.

Since it is difficult to precisely pinpoint strings that cor-

responds to access tokens, we use both pattern matching

(i.e., regular expressions) and domain-specific knowledge (i.e.,

API that may return an access token) to over-approximate

the domain of access tokens. Similarly, client secret is en-

coded as isSecret(x). Furthermore, statement y = new
SecretKeySpec(x), which is used to construct a client

secret, is represented as SecretKeySpec(y, x). Finally,

isLocalStore(x) represents a location for local store,

which can be Android SharePreferences or file systems.

isToken(x) : − x may be an access token

isSecret(x) : − x may be a secret

webView(x) : − x is the URL of a WebView

secretKey(y, x) : − SecretKeySpec(y, x)
Http(y, x, ) : − y is an HTTP object of which

arguments contain x
lstore(x, z) : − isLocalStore(x),FlowTo(z, x)
login(x, y) : − Login with user x and password y

Fig. 5: Rules for computing the OAuth related predicates.

V. ANTI-PROTOCOLS IN OAUTH

This section describes OAUTHLINT’s anti-protocol lan-

guage, which is a Datalog program augmented with builtin

predicates. We propose five anti-protocols that widely ap-

pear in existing mobile apps and formalize them using our

language. To identify the pattern of these anti-protocols, we

manually reverse engineered 43 Android apps from Google

Play Store. The anti-protocols are designed with Android and

Java APIs, and therefore are not biased with any particular

application. For each anti-protocol, the user defines a unique

predicate that serves as the signature for this anti-protocol.

In what follows, we first describe the syntax of OAUTH-

LINT’s built-in predicates, and then discuss five common anti-

protocols in OAuth.

A. An anti-protocol language for OAuth

We first introduce our anti-protocol language for OAuth,

shown in Fig. 6. Here, arg, reg, and mem are variables from

function arguments, registers, and memory, respectively. The

predicate flowTo determines the data dependency between

two variables, as specified in Section IV. Finally, we can ex-

press more complex queries by composing simple expressions

with logical operators (i.e., ¬,∧,∨, etc.).
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vi ::= arg | reg | mem | ...
φ ::= flowTo(v1, v2) | isToken(v1) | isSecret(v1)

| secretKey(v1, v2) | Http(v1, v2, v3) | lstore(v1, v2)
| webView(v1) | login(v1, v2)
| ¬φ | φ ∧ φ | φ ∨ φ

Fig. 6: The Anti-protocol language in OAUTHLINT.

User

2. Req Token
3. Req Token

4. User grants permission

5. Req Token 
6. [Req Token]

7. Access Token

8. [Access token]*

9. Protected resource

Verifies signature

Verifies signature

Verifies signature

1. [App ID, Resource_type ]

Service Provider Relying Party

The relying party bundle this 
secret into their mobile apps, 
which enables attackers to 
impersonate them and get 
user data.

Relying party’s mobile 
application

Fig. 7: Vulnerability of locally bundled client secret OAuth

1.0 flow. Parameters inside the square brackets are typically

signed by client secret.

B. Common Anti-protocols in OAuth

1) Locally Bundled Client Secrets: Relying party secret,

which is often referred to as the client secret by OAuth

2.0 and consumer secret by OAuth 1.0, is used by service

providers to authenticate the relying party. Developers can

obtain the relying party secret from the developer’s console

of the service providers when they register their application.

Many developers misunderstand the purpose of the relying

party secrets and store them locally on client-side applications.

If a developer bundles the relying party secret with her mobile

application, an attacker can easily retrieve it through reverse

engineering, and use this secret to get her own application

to be authenticated by the service providers as a benign

application. Fig. 7 use OAuth 1.0 as an example to illustrate

the vulnerability of locally bundled client secret. Relying party

gets the client secret from the service provider when it registers

for the OAuth service, and the client secret is then used to

generate the signature from the token in step 8. Since the

service provider verifies the signature to check the identity of

the relying party, if the relying party bundles the secret in their

mobile app, the attacker can do simple reverse engineering to

extract the client secret and impersonate the relying party (i.e.,

victim) to access the user’s protected resources.

In practice, OAUTHLINT identifies that many developers

bundle their relying party secrets as field variables, resource

files, or constants in their application code. For instance, here

is an example from the GoFundMe application [14] which

hard-codes its secret for communicating with Twitter:

1 String consumer_secret =
2 "QfMu9***...";
3 mac = Mac.getInstance("HmacSHA1");
4 key = encodeParam(consumer_secret);

5 mac.init(new SecretKeySpec
6 (key.getBytes(), "HmacSHA1"));
7 HttpURLConnection c =
8 new URL(url).openConnection();
9 params = new ArrayList();

10 params.add("signature="
11 +getSignature(mac,token,..));
12 ...
13 r = c.getInputStream();

The locally store client secrets can be encoded as the following

anti-protocol in OAUTHLINT:

isSecret(x) ∧ secretKey(y, z) ∧ flowTo(x, z)
∧Http( , u, ) ∧ flowTo(y, u)

In addition to the above scenario, developers also store

relying party secrets in Android SharedPreferences, which is

also insecure:

1 String appSecret = getAppSecret();
2 SharedPreferences sf = getActivity()
3 .getPreferences(mode);
4 SharedPreferences.Editor editor =
5 sf.edit();
6 editor.putString("app_secret",
7 appSecret);
8 editor.commit();

Since the data in SharedPreferences are stored in the file

system, an attacker can access the secret by other malicious

applications if the device is rooted. OAUTHLINT uses the

following anti-protocol for checking this variant:

isSecret(x) ∧ lstore( , z) ∧ flowTo(x, z)

where lstore represents all untrusted locations.

2) Using WebView for OAuth Transactions: Using Web-

View for OAuth transactions is insecure because WebView

breaks the isolation between the service provider and the

relying party. When a malicious relying party hosts the service

provider’s website in the WebView of their mobile applica-

tions, the malicious relying party can get the user’s cookies

to log in on behalf of the user. Fig. 8 illustrates an example

of using Webview for Facebook login. Webview enables the

hosting app (malicious relying party) to access the cookies

of the service provider such as Facebook. With the cookies,

the malicious relying party can log in on behalf of the user.

This attack can be persistent if the service providers such as

Google and Facebook use long term cookie for better user

experiences, which is quite common.

In practice, we found many developers use embedded Web-

View or mobile browsers for user redirection in OAuth, which

endangers user privacy. For example, here is a code snippet

from the Waplog application [15]:

1 WebView webview;
2 String url = "provider.com/..?
3 client_id=".."
4 &redirect_url=".."
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Webview provides the feature 
that app can get the cookies 
from the webview it embeds 

Facebook uses long term cookie 
even inside webview, and attacker
can reuse the cookie to log in as 
the user. 

Fig. 8: Vulnerability of using Webview for OAuth transactions.

5 &response=code";
6 ...
7 public void onCreate() {
8 webview.loadUrl(url);
9 }

Using WebView for OAuth transactions can be encoded as

the following anti-protocol:

isSecret(x) ∧ isToken(y) ∧ webView(z)
∧flowTo(x, z) ∧ flowTo(y, z)

3) Client-side API Call: Client devices should not be

trusted during API calls that are involved in the flows for

OAuth authentication. In other words, relying parties should

always assume that any requests made from client devices

could be tampered by the attackers. Unfortunately, in reality,

developers often misunderstand the security implication and

assume that the access token granted by the service providers

are only bounded to the relying party. As a result, an attacker

could leverage the access token granted for some malicious

applications and login as a user for other benign applications

to access other sensitive information. For example, the Topface

application [16] exchanges access token for user id by doing

API call from the application to authenticate users.

1 String url = "api.provider.com/..";
2 HttpURLConnection c =
3 new URL(url).openConnection();
4 c.setRequestMethod("POST");
5 ...
6 params = new ArrayList();
7 params.add("oauth_consumer_key="+

client_id);
8 params.add("oauth_token="+

access_token);
9 params.add("oauth_signature="+

getSignature(client_secret));
10 ...
11 c.setRequestProperty("Authorization

",createHeaders(params));
12 String user_id =
13 parseJSON(c.getInputStream(),"id");
14 newUserLogin(user_id);

We express the Client-side-API-Call vulnerability using the

following anti-protocol:

isToken(x) ∧ isSecret(y) ∧ Http(r, u, ) ∧ login(v, )
∧flowTo(x, u) ∧ flowTo(y, u) ∧ flowTo(r, v)

4) Storing Access Tokens on Client Devices: By the end

of a typical OAuth transaction, the relying party receives

an access token, which is a raw string that can be used

to make API calls to retrieve protected resources from the

service provider. Stealing access token provides an ideal vector

through which an attacker can compromise user accounts and

harvest confidential data such as email and contacts. Some

service providers (e.g., Google) also allow access to user’s files

stored in the cloud via access tokens [17]. More importantly,

an access token does not require user’s password and is

capable of bypassing any two-factor authentication. To make

things worse, the only way to revoke an attacker’s access is

to explicitly revoke access to the malicious application that

uses the access token to launch attacks. Thus, having access

token obtained by attackers could have an adverse impact on

users. During U.S. Presidential Election in 2016, one of the

tactics attackers used was collecting OAuth access tokens, as

reported [18] by security experts from FireEye.

Our analysis finds that many developers often do not encrypt

their raw access tokens before storing them to client devices,

using SharePreferences or files in the external storage. This is

insecure, as data in Sharedpreferences or filesystem and can

easily be accessed from any rooted device or an emulator. For

example, the Chatous application [19] stores the access token

received from Instagram as follows:

1 String aToken = getAccessToken();
2 SharedPreferences sf = getActivity()
3 .getPreferences(mode);
4 SharedPreferences.Editor editor =
5 sf.edit();
6 editor.putString("access_token"
7 ,aToken);
8 editor.commit();

Storing access token on client devices can be encoded as

the following anti-protocol:

isToken(x) ∧ lstore( , u) ∧ flowTo(x, u)

5) Sending Raw Access Token to Server: To make server-

to-server API calls during OAuth transactions, developers send

the access token to the relying party server. However, if a raw

(i.e., unsigned) access token is sent to the backend server, a

modified client application can send arbitrary access token and

initiate an impersonation attack.

A client device is assumed to be untrusted when OAuth

is used for authentication. Thus, instead of making API call

directly, a mobile application should communicate with its

own backend server and pass the access token to the server.

The server would then use the access token to make API calls

to communicate with the resource server of the corresponding

service provider. However, it is important for developers to
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understand that access tokens are portable. Once an access

token is received, it can be used from both applications and

server to fetch users’ resources. Thus, sending an unsigned

access token to the server can lead to Token Hijacking. An

example from the Wish application [20] that sends the raw

access token to the backend server is given below:

1 String aToken = getAccessToken();
2 HttpClient httpClient =
3 new DefaultHttpClient();
4 HttpPost httpPost =
5 new HttpPost("/backend.com/

tokensignin");
6 params = new ArrayList(1);
7 params.add(new BasicNameValuePair
8 ("access_token", aToken));
9 httpPost.setEntity(new

10 UrlEncodedFormEntity(params));
11

12 httpClient.execute(httpPost);

Sending raw access token to server can be encoded as the

following anti-protocol:

isToken(x) ∧ Http( , u, ) ∧ flowTo(y, u)

Google recently added a security notice to address this

vulnerability in their official documentation [21]. To authen-

ticate users on Google’s backend servers, they recommend

developers to send ID-token ((returned by GoogleSignInAc-
count.getIDToken())) which is signed by Google’s public keys.

If backend server receives sensitive information such as access

token in plain text, a modified application can send an arbitrary

token to the server and thereby, initiate an impersonation

attack.

VI. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of OAUTHLINT, we conduct

a series of experiments to answer the following questions:

• How effective is OAUTHLINT at identifying real-world

vulnerabilities in OAuth implementations?

• How prevalent are those anti-protocols discussed in sec-

tion V?

• How do the real-world OAuth vulnerabilities look like?

A. Data Collection

To find the current scenario of vulnerable implementation

of OAuth, we have analyzed 600 latest Android applications

(shown in Table I) collected from Google Play Store. Our

unbiased selection of applications includes top 300 free appli-

cations from all categories, top 200 free social applications,

and top 100 free communication applications. The reason why

we include more applications in the social and communication

category is that these applications are usually more likely to

use OAuth. Most applications use OAuth SDKs from service

providers such as Google and Twitter. Table III shows the

detail of the statistics. All applications were collected in April

2019.

Our analysis found that 316 out of the 600 applications use

OAuth with at least one Service Provider. We built a Soot-

based sanitizer that automatically analyzes the Dalvik byte-

codes to filter out applications not using any relevant classes

or APIs provided by the Service Providers. We included 20

most popular Service Providers for this sanitization step.

Category #apps #apps (OAuth) #apps (Vulnerable)
Top Free 300 178 39
Social 200 109 48
Communication 100 29 14
Total 600 316 101

TABLE I: Top Android applications using OAuth

B. Results

OAUTHLINT successfully analyzed, in total 316 applica-

tions that use at least one OAuth service provider. Among

the remaining 284 applications, 273 applications did not use

any OAuth implementation and 11 applications ran out of

memory during the analysis. In average, total runtime for

each application was 282.6 seconds and maximum memory

consumption was 1931.06 MB during the analysis. All results

mentioned here are in reference to the 316 successfully ana-

lyzed applications.

Table II lists the number of vulnerable applications for

different OAuth vulnerabilities. Total vulnerable applications

with distinct number of vulnerabilities are illustrated in Fig. 9.

We discuss the results for each vulnerability below:

Locally Bundled Client Secrets. OAUTHLINT successfully

identified 29 applications that bundle the consumer key/secret

of at least one service provider within the application code.

We found 18 applications bundled Twitter consumer key and

secret, 7 applications bundled the client id and client secret

from Instagram, 3 applications bundled the facebook app

secret, and 12 applications bundled the consumer keys/secrets

from other service providers in the source code.

Using WebView for OAuth Transactions. This vulnerability

is a common scenario for the application that implements

OAuth in an embedded WebView for the web-based ser-

vice providers. By hosting the service provider’s website in

the WebView of the relying party’s mobile applications, the

relying party can interact with the service provider easily.

In addition, a malicious relying party can access the user’s

cookies in the service provider website to log into the user’s

account. OAUTHLINT successfully identified 24 applications

who use WebView for the authorization and authentication

transactions of OAuth. 9 applications choose to implement the

web-based OAuth version instead of app-based version, even

though corresponding service providers provide official SDK

particularly for app-based OAuth implementation.

Client-side API Call. When using OAuth for authentication,

developers should pass the encrypted access token received

from the relying party application to the backend server of

the same relying party and then, should verify the access

token with the service provider by doing server-to-server API

call. OAUTHLINT identified 69 applications that violated this
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secure approach and performed the authentication by making

client-to-server API call. For authentication, client device

should not be trusted as an API call made from the client

side could be tampered by a malicious user.

Storing Access Token on Client Device. OAUTHLINT

identified 21 applications that stores plain (i.e., unencrypted)

access token in Android SharedPreferences. Access tokens

are portable, which means an access token obtained from a

relying party application can also be used from any client,

server or otherwise. Hence, if malicious attackers retrieve the

access token from a client device, they can use it from a

different machine to launch an impersonation attack. Storing

sensitive access token in insecure SharedPreferences gives

partial security, as data stored in SharedPreferences can be

easily accessed by any applications or user from a rooted

device or emulator. Android provides a KeyStore system to

enhance the security for storing such sensitive information

such as access token.

Sending Raw Access Token to Server. Right after obtaining

the access token at the authorization endpoint, relying party

application should send the access token to their backend

server in order to exchange it for user’s resources (i.e., user

id). However, to this end, relying party server should not trust

data received from the application. A malicious attacker could

modify the application to tamper the access token and hence,

initiate an impersonation attack to the relying party server.

OAUTHLINT identified 17 applications that send the plain

access token to the relying party server.

Finally, we note that the analysis in OAUTHLINT is precise.

As shown in Table II, the average false positive rate is 10%.

We manually inspected the false alarms and confirmed that

most of them are caused by the imprecision of the pointer

analysis and call-graph construction.

Vulnerability #apps #FP
Locally Bundled Client Secrets 29 2
Using WebView for OAuth Transactions 24 3
Client-side API Call 69 7
Storing Access Token on Client Device 21 3
Sending Raw Access Token to Server 17 1

TABLE II: OAuth vulnerabilities in top android applications

OAuth API Total Apps Vulnerable Apps Oauth1.0 or 2.0
Facebook 301 52 2.0
Google 295 11 2.0
Twitter 34 23 1.0a, 2.0

TABLE III: Statistic of top OAuth APIs in our evaluation

C. Case Studies

CBS Sports. To estimate the impact of vulnerable

implementations of OAuth, we manually inspected the

applications that were reported as vulnerable by OAUTHLINT.

CBS Sports [22] is one of the most popular applications in

U.S. for top sports news, scores, and videos. According to

Google Play, this application was installed more than 10

millions times. This application got flagged by OAUTHLINT

Fig. 9: Number of applications with 1, 2, ...5 vulnerabilities.

for three reasons. First, it bundles the twitter consumer key

and consumer secret within the application code, which makes

it vulnerable for impersonation attack with the authorization

transactions of OAuth. Secondly, it uses an embedded

WebView for OAuth transactions between relying party

application and service provider. Currently, there exists no

secure way for the web-based service provider to deliver the

sensitive OAuth data to the honest relying party application.

Hence, using WebView for OAuth transactions makes it very

difficult for the service provider to determine the identity

of the CBS Sports application. Thirdly, the application

uses client-side API calls to authenticate new users. Client

device must not be trusted during the OAuth transactions

for authentication since corresponding API calls could be

tampered by malicious users.

Topface. We also performed a thorough inspection with

Topface [16], one of the most popular social application

in Google Play. This application allows users to meet new

people online and was installed more than 10 million times.

However, Topface provides authentication using OAuth

for various service providers including Google, Facebook,

Instagram, and Vkontakte. The application was flagged by

OAUTHLINT for several reasons. Even though it provides

secure intent-based OAuth transactions for Google and

Facebook, it uses WebView for both authorization and

authentication transactions for Instagram and Vkontakte.

More importantly, it performs all API call for OAuth

transactions from client-to-server instead of server-to-server

call, which allows a malicious user to tamper sensitive

information such as access token and user id. The application

also stores plain access token, user id and email address in

the SharedPreferences without doing any encryption. Storing

these sensitive information in SharedPreferences gives

partial security since any data stored in SharedPreferences
can be easily accessed from any rooted devices and emulators.
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VII. RELATED WORK

Since OAuth is a critical protocol for authentication and

authorization, many researchers have studied the implementa-

tion of OAuth and discovered many prominent attacks for web

applications [23]–[27]. In recent years, mobile developers also

use OAuth to build authentication or authorization schemes,

and they have many misunderstandings of the security impli-

cations of OAuth. Researchers also did field studies to identify

the vulnerabilities due to the implementation errors of OAuth

in mobile apps. Chen et al. [3] present a comprehensive study

on implementation errors and misunderstandings regarding

OAuth protocols in mobile applications. Their study also

shows that over 60% of mobile OAuth implementations have

at least one vulnerability. Also, Shehab et al. [6] analyze

source codes of Android applications and demonstrate possible

attacks in OAuth implementation. However, these studies

depend on dedicated manual analysis by security experts such

as inspecting the network traffic and inferring the protocol

flows and cannot be scaled to large-scale studies. Furthermore,

researchers also studied user’s privacy risks during OAuth

transactions [28] Comparing to these works, our system is

designed to automatically identify the vulnerabilities of mobile

OAuth implementations efficiently and effectively.

Realizing that OAuth is a critical problem, researchers also

propose solutions to improve the security of OAuth. For exam-

ple, Yang et al.’s work [4] is the most relevant one, they build

an automatic testing tool using symbolic execution to check

the correctness of 10 popular OAuth SDKs and identified 7

vulnerabilities. In comparison, our study focuses on the imple-

mentation errors of the relying party because the developers of

the relying parties are more easily to misunderstand OAuth and

make mistakes comparing to the developers of popular SDKs.

Researchers also propose to run automatic traffic analysis

to identify OAuth implementation errors [29], however, this

kind of approach will fail to point out the details of the

implementation errors. Compared to their work, OAUTHLINT

can identify the details of the implementation errors, which

is very helpful for the developers to fix the security issues.

Wang et al. propose a tool that combines static analysis and

network analysis to identify OAuth bugs, however, their tool

is semi-automatic and requires manual work to identify the

vulnerabilities [30]. Applying formal analysis to the OAuth

protocols is also another way to improve the security of the

protocols [31]–[33]. However, though these papers elegantly

model the OAuth protocol, the level of abstraction in these

papers make it difficult to detect implementation errors.

Detecting Implementation Mistakes In recent years, re-

searchers have been studying the problem of implementation

errors in many security applications such as SSL, and crypto

libraries. For example, CryptoLint [34] did a systemic analysis

of the incorrect usage of crypto API, and SSLLint [35]

did program analysis to identify the errors of implementing

SSL. Moreover, researchers also utilized demand-driven static

analysis for other domains. Arzt et al. present Flowdroid [36]

- a static taint-analysis tool designed to identify data leaks

in Android applications. Feng et al. [37] implement a tool to

answer a class of interprocedural control flow queries about

Java programs. Martin et al. [38] present a query language

(PQL) that uses context-sensitive pointer alias analysis to

mine information (e.g., bugs) from a program. Sridharan et al.

[39] introduce a demand-driven points-to analysis algorithm

that outperforms the previous techniques. Feng et al.’s [40]

work implements a semantic-based approach that identifies

an Android malware that leaks the user’s private information.

Compared to these papers, OAUTHLINT needs to overcome

more challenges because OAuth is a multi-party protocol and

we don’t have access to the data from all parties.

VIII. BEST SECURITY PRACTICE FOR OAUTH RELYING

PARTY

According to our analysis, 101 of the OAuth relying party

implementation suffers from at least one vulnerability. We

hope this study can help to provide more guidelines for the

mobile OAuth developers, especially for the relying party

developers.

For securing the OAuth protocol, there are two general

major points : (1) be aware that the security of OAuth partially

lies in its access token delivery methodology; (2) never trust

the mobile client because it might belong to a malicious user

who can access the secret data and temper the verification

results or data. For example, if developers are developing

OAuth 2.0 in Android, instead of using the default Intent

scheme to deliver the access token, they should use the

developer key hash in order to check the identity of the party

that receives the token. If developers are developing OAuth

1.0, they also need to make sure they can verify the token

receiver’s identity correctly. The relying party should never

bundle the developer’s consumer secret and consumer key into

its mobile app because a malicious user can just extract the

secret and key from the app and pretend to be the relying party

to access user data.

For using OAuth to do authentication, the relying party

needs to be more careful about dealing with the users. First,

the relying party must not bundle any security related protocol

logic (e.g., security checks) or any sensitive information (e.g.,

the token) into its own mobile application. Second, the relying

party must assume that the attacker could tamper with any data

sent from the users device. Because of this, the relying party

must check that the relying party receiving the users ID in

the last step of the protocol is the same relying party that the

user intends to authenticate to. For example, instead of using

the default implicit flow of OAuth 2.0 for authentication, the

relying party should do an additional verification step such

as described in the appsecret proof flow of Facebook OAuth

guidelines [12].

IX. DISCUSSION

Like any other program analysis tool, OAUTHLINT has a

number of limitations:

OAUTHLINT proposes a query language that helps devel-

opers to define OAuth-based anti-protocols. In this paper, we
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explore five anti-protocols, each of which represents a class of

vulnerabilities in OAuth implementation that widely appears

in Android apps. However, defining a new anti-protocol that

covers a wide range of vulnerable implementation scenarios

may seem tedious for a security-expert. Also, applications

having complex logical implementation flaws may still be un-

detected by OAUTHLINT. In addition to that, service providers

typically allow developers to make certain changes in security

settings of the developer’s panel. Cross-checking between

program facts in relying party apps and security settings in

developers panel is beyond the limit of OAUTHLINT.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we propose OAUTHLINT, the first static

analyzer for checking anti-protocols (i.e., vulnerabilities) in

mobile OAuth implementation. We propose five anti-protocols

that widely appear in mobile apps and formalize them us-

ing our query language. Furthermore, we leverage a fully-

automatic and demand-driven static analysis to identify anti-

protocols that appear in the Android apps from the relying

parties. To evaluate the effectiveness of our approach, we

perform a systematic study on 600+ popular apps which have

10 millions of downloads. Our evaluation shows that for those

popular apps that use OAuth API, more than 32% of them

contain at least one anti-protocol. For those anti-protocols

identified by OAUTHLINT, we also reported them to the

developers of corresponding mobile apps.

There are several future directions that we plan to explore.

First, we will develop techniques to automatically repair

Android apps that have vulnerabilities in their OAuth im-

plementations. Second, we are also very interested in apply-

ing program synthesis to perform a correct-by-construction

paradigm for OAuth implementations. In that case, developers

only need to specify the OAuth specifications using a high-

level domain specific language and let the synthesizer generate

the implementations.
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