
Demystifying Loops in Smart Contracts
Benjamin Mariano

bmariano@cs.utexas.edu
University of Texas at Austin

Yanju Chen
yanju@cs.ucsb.edu

University of California, Santa
Barbara

Yu Feng
yufeng@cs.ucsb.edu

University of California, Santa
Barbara

Shuvendu Lahiri
shuvendu.lahiri@mircrosoft.com

Microsoft Research

Isil Dillig
isil@cs.utexas.edu

University of Texas at Austin

ABSTRACT
This paper aims to shed light on how loops are used in smart con-
tracts. Towards this goal, we study various syntactic and semantic
characteristics of loops used in over 20,000 Solidity contracts de-
ployed on the Ethereum blockchain, with the goal of informing
future research on program analysis for smart contracts. Based on
our findings, we propose a small domain-specific language (DSL)
that can be used to summarize common looping patterns in Solid-
ity. To evaluate what percentage of smart contract loops can be
expressed in our proposed DSL, we also design and implement a
program synthesis toolchain called Solis that can synthesize loop
summaries in our DSL. Our evaluation shows that at least 56% of
the analyzed loops can be summarized in our DSL, and 81% of these
summaries are exactly equivalent to the original loop.
ACM Reference Format:
Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig.
2020. Demystifying Loops in Smart Contracts. In Proceedings of ASE ’20: ACM
International Conference on Automated Software Engineering (ASE ’20). ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As programs that run on a blockchain, smart contracts enable multi-
party transactions that involve the transfer of funds or other com-
modities. Due to their obvious security-critical nature, there has
been a flurry of interest —both in the security, software engineering,
and formal verification communities — in developing techniques for
automatically checking that smart contracts behave as expected. For
example, some of these techniques look for certain patterns, such as
re-entrancy, that are highly correlated with security vulnerabilities
in practice [20, 34]. Other proposals aim for full functional correct-
ness and propose verification tools for checking smart contracts
against manually-written formal specifications [27, 30, 38, 40].

Despite numerous differences between existing contract analysis
techniques, a common unifying theme behind these techniques is
the assumption that loops occur rarely in smart contracts [40]. As
a result, most existing program analysis techniques in this space

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Melbourne, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

brush aside the classical problem of loop invariant generation and
focus on challenges that are unique to smart contracts.

The goal of this paper is to study how loops are used in smart
contracts and examine how frequently they occur in practice. Our
main motivation behind this study is to guide and inform future
research on analysis techniques for smart contracts. Specifically,
we focus on Solidity, the most popular programming language
for smart contract development, and study over 20,000 Solidity
contracts deployed on the Ethereum blockchain. In addition to
evaluating loop frequency, we also investigate several interesting
syntactic and semantic properties of smart contract loops. Our
primary goal in this study is to understand the nature of loops that
occur in smart contracts so that subsequent research can develop
suitable abstract domains and other analysis techniques for more
precise static reasoning about smart contracts.

As a first step towards achieving this goal, we implement a
basic static analysis to extract several interesting features of smart
contract loops. We then use the results of this analysis to cluster
semantically similar loops and manually study the behavior of
different clusters. Our manual investigation suggests that most
smart contract loops can be summarized using a small domain-
specific language (DSL) with familiar functional operators, such as
map, fold, and zip.

As a next step towards precise reasoning about smart contract
loops, we build a program synthesis toolchain for generating sum-
maries of Solidity loops in our proposed DSL. Our synthesizer
performs type-directed search over the DSL constructs and uses
properties of the loop body to significantly prune the search space
of candidate summaries. Once we generate a candidate summary,
we then check for equivalence against the original Solidity loop
using a (bounded) equivalence checker built on top of Rosette [44].

We have implemented our smart contract loop summarization
technique in a tool called Solis and evaluate it on a large collection
of Solidity loops. Our evaluation suggests that a majority of smart
contract loops can be summarized (either partially or precisely) in
our proposed DSL by leveraging program synthesis.

In summary, this paper makes the following contributions:

• We perform an empirical study of loops in over 20,000 So-
lidity contracts deployed on the Ethereum blockchain and
study various syntactic and semantic properties of these
loops. Our study shows that half of the contracts with over
200 lines of code contain at least one loop and that a typical
contract contains one loop per 250 lines of Solidity code.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

• We cluster smart contract loops according to their semantic
features and manually investigate each cluster to understand
common behaviors of Solidity loops.

• We use the results from our manual investigation to design
a domain-specific language called Consul for summarizing
smart contract loops using familiar functional operators.

• We implement a program synthesis toolchain called Solis
for summarizing solidity loops in Consul, which uses type
information and properties of the input loop to reduce the
space of candidate loop summaries that it needs to consider.

• We perform an evaluation of our synthesizer on 1220 loops
and show that almost half of the loops can be precisely sum-
marized in our DSL using the proposed synthesis technique.

2 A STUDY OF LOOPS IN SMART CONTRACTS
In this section, we provide statistics about the frequency of loops in
smart contracts and report on the distribution of loops according
to various features. To perform this study, we collected over 27,000
smart contracts from Etherscan and used the Slither static ana-
lyzer [12] to analyze their loops. In this section, we summarize our
findings for the 22,685 contracts that could be analyzed by Slither.1

2.1 Frequency of Loops
Since many program analyzers for smart contracts are based on
the assumption that loops are rare, we first study the frequency of
loops in smart contracts written in Solidity.

Figure 1 presents a bar chart showing the percentage of contracts
that contain at least one loop (in red). Specifically, each bar corre-
sponds to a family of smart contracts grouped according to their
lines of Solidity code. Across all contracts, we find that roughly one
in five contracts have at least one loop, suggesting that loops may
not be quite as rare as assumed in prior work [40]. However, the
percentage of contracts that contain loops increases significantly
as we consider larger contracts. In particular, for contracts between
500-1000 lines of code, roughly four in five contracts contain at
least one loop, and almost no contract with over 1000 lines of code
is loop-free.

Next, we study the frequency of loops within a typical smart
contract. The blue bars in Figure 1 show the frequency of loops
per 100 lines of source code, again grouped according to lines of
Solidity code. Across all contracts, we encounter an average of one
loop per 250 lines of source code. However, this ratio is significantly
higher for larger contracts. In particular, for contracts with over
500 lines of code, we encounter an average of one loop per 100-125
lines of source code.

Key finding 1: Roughly one in five contracts contain at least
one loop, and only half of the contracts with over 200 lines of
code are loop-free. Across all contracts, we find an average
of one loop per every 250 lines of source code.

2.2 Nature of Loops, Syntactically
In this section, we investigate various syntactic properties of loops
in smart contracts. In particular, Table 1 presents information about
1Slither is unable to analyze some of these contracts due to unsupported versions or
features of Solidity.

Figure 1: Percentage of smart contracts containing at least
one loop and frequency of loops per hundred lines of source
code (grouped according to contract lines of source code)

Description Avg Median Max
< 100 LoC
Size of the loop body 1.84 1 8
Nesting level 1.03 1 3
Number of variables 4.47 4 12
100-500 LoC
Size of the loop body 2.28 2 122
Nesting level 1.03 1 3
Number of variables 5.13 4 23
500-1000 LoC
Size of the loop body 2.28 2 23
Nesting level 1.07 1 3
Number of variables 5.33 5 22
>1000 LoC
Size of the loop body 2.39 2 19
Nesting level 1.11 1 3
Number of variables 4.70 4 25
Overall
Size of the loop body 2.27 2 122
Nesting level 1.05 1 3
Number of variables 5.06 4 25

Table 1: Information about loop size, nesting level, and num-
ber of variables touched

the size of loops for a family of contracts grouped according to their
size. Across all contracts, we find that the median size of the loop
body is two lines of code, and, unlike frequency (Figure 1), we see
that loop size does not seem to vary much according to contract
size. As also shown in Table 1, it is very uncommon to see nested
loops in smart contracts: The median nesting level, including for
contracts over 1000 lines of code, is just one (i.e., no nested loops).
Furthermore, a typical loop touches an average of roughly five

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

program variables.

Key finding 2: A typical smart contract loop is quite small,
containing roughly two lines of code in their body. Further-
more, nested loops are very uncommon.

Next, as summarized in Table 2 we study what percentage loops
exhibit various syntactic properties. Our first finding is that the
overwhelming majority of smart contracts (around 88%) involve
collections, meaning that they iterate over elements of arrays or
mappings. Furthermore, roughly three out of four loops perform
writes, meaning that they involve side effects on contract state.
Another interesting observation is that, while the average loop
body contains approximately two lines of code, more than one
in three loops contain at least one control flow construct (e.g., if
statement, continue etc.) in their body. Other salient findings from
our study can be summarized as follows:

• Batch transfer: Loops that involve calls to built-in Solid-
ity functions like send and transfer typically perform so-
called batch transfer, meaning that they transfer ether to a
set of recipients. According to our findings, 8.5% of Solidity
loops perform batch transfer.

• Enforcing requirements: Programmers use the require
construct in Solidity to establish some pre-condition. We find
that 13% of loops involve a require statement, suggesting
that these loops establish some universally quantified pre-
condition involving a data structure.

• Nested loops: As we saw earlier, nested loops are uncom-
mon, and only 4.5% of loops contain a nested loop.

• SafeMath: Approximatly 13% of the loops involve a call to
the SafeMath library for avoiding overflows.

• Events: Solidity programs can emit so-called events that
faciliate the convenient usage of EVM logging facilities. We
find that the emission of events is quite uncommon within
loops – only 4.5% of loops involve events.

• Function calls: Roughly one in five Solidity loops contain
a call to a function (excluding safemath calls and built-in
functions like transfer).

• Bounded loops: Approximately 18% of the loops have a
constant bound, while the remaining ones all have symbolic
bounds.

Key finding 3: The overwhelming majority of loops iterate
over collections and modify contract state. However, since
function calls within loops are not very common, analysis
of most loops does not require interprocedural reasoning.
Furthermore, 80% of Solidity loops have symbolic bounds;
therefore, analysis techniques based on loop unrolling cannot
soundly handle most smart contract loops.

2.3 Nature of Loops, Semantically
In this section, we investigate some interesting semantic properties
of smart contract loops. To perform this study, we use the Slither
infrastructure [12] to implement a basic static analysis for analyzing
data dependencies between variables. The results of this analysis
are summarized in Table 3.

Description Percentage
Loops that involve collections 87.58%
Loops that involve writes 76.27%
Loops that involve events 4.50%
Loops that have function calls 21.95%
Loops that have control flow constructs 37.39%
Loops that have nested loops 4.52%
Loops that have transfers 8.46%
Loops that have requires 12.98%
Loops involving SafeMath 13.25%
Loops that have a constant bound 17.79%

Table 2: Syntactic properties of loops

Type of dependence Percentage
Scalar value depends on collection 18.14%
Collection depends on collection 23.77%
Collection depends on scalar 15.90%
Collection key depends on collection value 14.84%

Table 3: Semantic properties of loops

Our first finding is that 18% of the smart contract loops involve
some data dependency from collections to scalars. Such data depen-
dencies typically arise when the loop performs some computation
by iterating over a data structure, such as computing the sum of all
elements in an array.

Next, we find that 24% of loops involve data dependency between
a pair of collections (including dependencies between different
elements of the same collection). For example, such dependencies
arise when shifting array elements or building a new data structure
based on values stored in other data structures. On the other hand,
dependencies of collections on scalars is slightly less common;
roughly 16% of loops exhibit such a dependency. For instance, a
loop that sets some range of array elements to a constant value
would exhibit such a collection-on-scalar dependency.

Finally, we study how often collection elements are used to index
into other collections. For instance, consider a scenario where an
array 𝐴 stores all participants in an auction, and another mapping
𝑀 from participants to amounts stores the bid of each participant.
In this scenario, one may need to loop over all elements in array
𝐴 and use 𝐴[𝑖] to access the bid of a given participant in 𝑀 . We
refer to this type of dependency as value-to-key dependency and
find that 15% of loops involve such a pattern.

2.4 Clustering Loops by Semantic Properties
In this section, we identify common looping patterns in smart
contracts using a combination of k-means clustering and manual
sampling. In particular, we use the scikit-learn Python library [39]
to facilitate semantic clustering of Solidity loops, and then manually
inspect samples from each cluster to determine common semantic
behaviors per cluster.

To perform this clustering, we first reduced the loops to depen-
dency graphs similar to DroidSift [47] and Holmes [18]. As the
four properties in Table 3 are clearly not sufficient for clustering,

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

Figure 2: Semantic clustering of 1279 smart contract loops,
projected into 3D space.

we broke down these properties into common dependency graph
features [18, 47], such as the number of different types of nodes
that are being read from or written to. In total, we used 37 features
that serve as refinements of the properties from Table 3. For a com-
plete list of the features used, see Appendix A 2. To identify only
common loop patterns, we restricted the number of clusters to 6.
Additionally, to reduce overlap in clusters, we limited loops to those
with single-statement bodies that contain only common function
calls (transfers, requires, and SafeMath functions).3

Figure 2 shows the results of our clustering, projected onto three
dimensions by performing a high-dimensionality reduction in a
scatter plot. For each cluster, we randomly sampled 10 files, and
manually inspected each sample. We will now explain some of the
salient findings from our manual investigation.

Fold pattern. Both cluster 0 (pictured in red in Figure 2) and
cluster 1 (in green) contain loops that perform an accumulating
computation similar to a fold in functional programming. In partic-
ular, 6 of the 10 sampled loops from cluster 0 sum the values of an
array/mapping, while 8 of 10 from cluster 1 perform a fold using a
more complicated arithmetic function.

Map pattern. Clusters 2 (in blue), 3 (in orange), and 4 (in purple)
contain loops that map values onto a global array/mapping, similar
to the map combinator in functional programming. In particular,
8 of the 10 loops sampled from cluster 2 write a constant value 𝑐
to mapping𝑚 indexed by an array 𝑎 (i.e.,𝑚[𝑎[𝑖]] = 𝑐 where 𝑖 is
the loop iterator). 7 of the 10 sampled loops in cluster 3 and 5 of 10
from cluster 4 contain a write from one mapping𝑚1 to another𝑚2,
e.g.,𝑚1 [𝑖] =𝑚2 [𝑖].

2Appendix is included in the supplementary material.
3Initially we tried less restrictive clustering, but this led to clusters whose common
behaviors were hard to identify.

Require. In addition to the mapping pattern found in cluster 4
(in purple), we also found that 3 of the 10 sampled loops contain
calls to the built-in require function, which reverts execution of
the smart contract if a user-defined condition is not met. For all
three loops, the user-defined condition was a linear constraint on
values of an array/mapping.

Arithmetic. Finally, the loops sampled from cluster 5 (in grey)
all contain complex arithmetic computations over global integers.
Furthermore, all of these loops use arithmetic functions from the
common SafeMath library, which may be why they were clustered
together. However, this cluster is significantly smaller than all the
other clusters — instances in this cluster only constitute 2% of the
loops used for this analysis.

In addition to sampling instances from each cluster, we also
sampled larger loops to see if their behavior can be expressed as
a combination of the behaviors observed in each of our clusters.
While we found many of the same behaviors, our manual investi-
gation of larger loops revealed another operator, namely zipWith ,
that is useful for characterizing smart contract loops. In particular,
loops involving this pattern perform pair-wise aggregation between
two arrays/mappings. However, we found several variants of the
zipWith pattern, where one or both of the mappings are indexed
by another mapping/array.

3 A DSL FOR LOOP SUMMARIZATION
Based on our findings from the previous section, we now propose
a small-but-expressive DSL called Consul4 that can be used to
summarize common Solidity loops. We believe this DSL can aid
analysis, verification, and optimization efforts for smart contracts
by capturing common loop behaviors and facilitating the design of
suitable abstract domains for analyzing smart contract loops.

The syntax of the Consul summarization language is shown in
Figure 3. At a high level, Consul programs are compositions of
assignments 𝑣 = 𝐸 (where 𝑣 is a program variable), requirements,
and ether transfers. Specifically, assignments capture side effects of
loops on program variables, and multiple side effects are expressed
via composition. In addition to capturing side effects on explicit
contract state, our DSL also captures the semantics of loops that
involve transfer and require, which occur in a non-trivial portion
of loops (recall Table 2).

In the remainder of this section, we give a high-level description
of Consul semantics and refer the interested reader to Appendix B
for the formal semantics of each construct.

3.1 Summarizing Side Effects on Contract State
Consul programs summarize the side effects of Solidity loops using
three functional operators and their variants. All of these constructs
operate over mappings and produce either scalars or mappings.

Map operator. The most basic construct in Consul is the map
operator map(𝑚,𝜑, 𝐹) which yields a new mapping 𝑚′ which is
the same as 𝑚 except that any key-value pair (𝑘, 𝑣) satisfying 𝜑

4Stands for “CONcise SUmmaries of Loops"

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

Core constructs

Stmt 𝑆 → 𝑣 = 𝐸 | 𝑆 ; 𝑆 | transfer(𝑚1,𝑚2, 𝐹 , 𝜑)
| require(𝑚,𝜑1, 𝜑2)
| requireNested(𝑚1,𝑚2, 𝜑1, 𝜑2)

Expr 𝐸 → 𝑚 ∈ Mappings
| map(𝑚,𝜑, 𝐹)
| foldl(𝑚,𝜑, 𝑓 , 𝑖) where 𝑓 ∈ {+,max, . . .}
| zip(𝑚1,𝑚2, 𝜑, 𝑓) where 𝑓 ∈ {+,max, . . .}
| mapNested(𝑚1,𝑚2, 𝜑, 𝐹)
| foldlNested(𝑚1,𝑚2, 𝜑, 𝑓 , 𝑖) where 𝑓 ∈ {+, . . .}
| zipNestedSym(𝑚1,𝑚2,𝑚3, 𝜑, 𝑓), 𝑓 ∈ {+, . . .}
| zipNestedASym(𝑚1,𝑚2,𝑚3, 𝜑, 𝑓), 𝑓 ∈ {+, . . .}

Functions

Function 𝐹 → 𝜆𝑥 . 𝑡

Term 𝑡 → 𝑥 | 𝑖
| 𝑥 ⊕ 𝑖 where ⊕ ∈ {+,×,−, /}

Int 𝑖 → 𝑐 ∈ Int | 𝑒 ∈ IntProgExprs

Predicates

Predicate 𝜑 → 𝜆(𝑥,𝑦) .𝜙
Formula 𝜙 → true | inRange(𝑥, 𝑡1, 𝑡2)

| 𝑣 ⋉ 𝑡1 where 𝑣 ∈ {𝑥,𝑦},⋉ ∈ {=, ≤, <, ≥, >}
| ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2

Figure 3: The Consul DSL for expressing loop summaries

is changed to (𝑘, 𝐹 (𝑣)). For instance, a loop that increments the
first 𝑛 elements in an array 𝑎 by one can be summarized using the
following Consul statement:

𝑎 = map(𝑎, 𝜆(𝑥,𝑦).inRange(𝑥, 0, 𝑛), 𝜆𝑥 .𝑥 + 1)

Foldl operator. As mentioned in Section 2.3, roughly one in five
Solidity loops perform some sort of aggregation over a data struc-
ture. To capture this common pattern, Consul provides a construct
of the form foldl(𝑚,𝜑, 𝑓 , 𝑖) that aggregates all values in𝑚 satisfy-
ing 𝜑 by using function 𝑓 and initial value 𝑖 . As an example, the
statement 𝑥 = foldl(𝑎, true, +, 0) captures the behavior of a loop
that computes the sum of all elements in array 𝑎 and assigns it to
variable 𝑥 .

Zip operator. Another common pattern we observed in Solidity
loops is to perform pair-wise aggregation between two mappings.
Consul captures this common behavior using the zip construct.
For example, the statement 𝑐 = zip(𝑎, 𝑏, true, +) captures the effect
of a loop that constructs a new array 𝑐 where each element 𝑐 [𝑖] is
the sum of 𝑎[𝑖] and 𝑏 [𝑖].

Nested family of operators. As discussed in Section 2.3, many
Solidity loops iterate over a mapping𝑚1 and use values in𝑚1 to
access values in another mapping𝑚2. Furthermore, we found this
pattern to occur frequently both for performing aggregation as well
as building new data structures. Therefore, the Consul language
provides a variant of each of the map, zip and foldl constructs for
expressing such behaviors.

Specifically, the construct mapNested(𝑚1,𝑚2, 𝜑, 𝐹) is similar
to map except that lambda expression 𝐹 is applied to elements
𝑚1 [𝑚2 [𝑖]] (rather than𝑚1 [𝑖]) for keys/indices 𝑖 satisfying predicate
𝜑 . For instance, consider a smart contract that has an array called 𝑎
that stores a designated set of addresses as well as another array
called 𝑏 that maps each address to some amount. Now, consider
a loop that increments the amount of money for each address in
𝑎 by some amount 𝑎𝑚𝑡 . This complex pattern can be summarized
concisely using the mapNested pattern as follows:

𝑏 = mapNested(𝑏, 𝑎, true, 𝜆𝑥 . 𝑥 + 𝑎𝑚𝑡)

Next, the nested variant of foldl, called foldlNested allows per-
forming nested aggregation. In particular, foldlNested(𝑚1,𝑚2, 𝜑, 𝑓 , 𝑖)
aggregates using function 𝑓 all elements𝑚1 [𝑚2 [𝑖]] for keys/indices
𝑖 satisfying predicate 𝜑 . For instance, the statement

foldlNested(𝑎, 𝑏, 𝜆(𝑥,𝑦).inRange(𝑥, 1, 3), +, 0)

computes the sum 𝑎[𝑏 [1]] + 𝑎[𝑏 [2]] + 𝑎[𝑏 [3]].
Finally, the two zipNested constructs provide nested variants of

zip. Specifically, consider three mappings:

𝑚1 : 𝜏1 ⇒ 𝜏2 𝑚2 : 𝜏1 ⇒ 𝜏2 𝑚3 : 𝜏3 ⇒ 𝜏1

Then, zipNestedSym(𝑚1,𝑚2,𝑚3, 𝜑, 𝑓) creates a new mapping𝑚4
of type𝜏1 ⇒ 𝜏2 where𝑚4 [𝑚3 [𝑖]] is equal to 𝑓 (𝑚1 [𝑚3 [𝑖]],𝑚2 [𝑚3 [𝑖]])
for those indices 𝑖 satisfying 𝜑 .

The other variant zipNestedASym is similar except that it is
asymmetric. Specifically, it operates over mappings with the fol-
lowing types:

𝑚1 : 𝜏1 ⇒ 𝜏2 𝑚2 : 𝜏3 ⇒ 𝜏2 𝑚3 : 𝜏3 ⇒ 𝜏1

Then, the construct zipNestedASym(𝑚1,𝑚2,𝑚3, 𝜑, 𝑓) creates a new
mapping𝑚4 of type 𝜏1 ⇒ 𝜏2 where:

𝑚4 [𝑚3 [𝑖]] = 𝑓 (𝑚1 [𝑚3 [𝑖]],𝑚2 [𝑖])

for those indices 𝑖 satisfying 𝜑 . In practice, we found this asymmet-
ric variant of zipNested to occurmore frequently than its symmetric
variant.

3.2 Summarizing Transfers and Requirements
Recall from Section 2.2 that roughly one in five Solidity loops in-
volve calls to built-in Solidity functions such as require and transfer.
Thus, our summarization language also provides constructs for
capturing the behavior of such loops. For instance, the construct
transfer(𝑚1,𝑚2, 𝐹 , 𝜑) is used to summarize batch transfers where
𝑚1 is a mapping 𝜏 ⇒ Address and 𝑚2 is a mapping 𝜏 ⇒ Int.
In particular, transfer(𝑚1,𝑚2, 𝐹 , 𝜑) indicates the batch transfer of
amount𝑚2 [𝑖] from the receiver object to address𝑚1 [𝑖] for all keys
𝑖 satisfying predicate 𝜑 .

Finally, our DSL provides two variants of require for summa-
rizing loops that enforce some pre-condition. In particular, the
construct require(𝑚,𝜑1, 𝜑2) checks that predicate 𝜑2 is satisfied for
all elements𝑚[𝑖] where 𝑖 satisfies 𝜑1. The requireNested construct
is similar and corresponds to the nested variant of require. Specif-
ically, require(𝑚1,𝑚2, 𝜑1, 𝜑2) checks that predicate 𝜑2 is satisfied
for all elements𝑚1 [𝑚2 [𝑖]] where 𝑖 satisfies 𝜑1.

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

Solidity Loop Consul Equivalent
for(j = 0; j < addrs.length; j++){

bal[addrs[j]] += amts[j];

}

bal = zipNestedASym(bal ,amts ,addrs ,inRange(x,0,addrs.length) ,+)

for(i = 0; i < _addrs.length; i++){

if (!wlst[_addrs[i]]) {

wlst[_addrs[i]] = true;

}

}

wlst = mapNested(wlst ,_addrs ,inRange(x, 0,_addrs.length) ∧ ¬y, true)

for(j = 0; j < addrs.length; j++){

cur = addrs[j];

require(cur != 0x0);

require(now > uTime[cur]);

amts[j] *= 1e8;

total += amts[j];

}

require(addrs ,inRange(x,0, addrs.length), x!=0x0);

requireNested(uTime , addrs , inRange(x,0, addrs.length), x < now);

amts = map(amts ,inRange(x,0,addrs.length), x*1e8);

total = foldl(amts , inRange(x,0,addrs.length), +, total)

Table 4: Examples of Solidity loops and their Consul equivalent. We omit lambdas to improve readability.

3.3 Examples
In this section we provide some sample Solidity loops and show
how they can be summarized in the Consul DSL.

Example 3.1. The first row in Table 4 shows a single line Solidity
loop that increments the balance of a list of addresses by a given
amount. This loop can be summarized using the asymmetric version
of the zipNested construct, as shown on the right-hand-side of
Table 4.

Example 3.2. The second row of Table 4 shows a loop that
whitelists certain addresses if that address is not already on the
whitelist. This loop can be summarized using the mapNested con-
struct, as shown in the second column of Table 4. Observe that the
predicate ensures that, for any updated element, the key must be
in the range [0, _addrs.length) and the corresponding value must
be false.

Example 3.3. The last row in Table 4 shows a more complex
loop that establishes a pair of pre-conditions, while also having
side effects on contract state. As shown on the right hand side of
the table, the summary of this loop involves the requireNested
construct since the requirement on the third line of the loop body
involves a nested data structure access. The update to the amts
array is captured using the map construct and the computation of
total amount is captured using foldl with the + operator.

4 SYNTHESIS OF LOOP SUMMARIES
As a first step towards reasoning about loops in smart contracts,
we implemented a tool called Solis for automatically synthesizing
loop summaries. Our tool is based on the syntax-guided synthe-
sis paradigm [3] and, as shown in Figure 4, it leverages both an
type-directed search engine and a (bounded) equivalence checker.
Specifically, the search engine enumerates candidate Consul sum-
maries for the given loop and uses the verifier to test equivalence
between the loop and candidate summary. The search engine contin-
ues this enumeration process until we either exhaust all candidate
Consul programs for the given loop or until we generate an equiv-
alent summary. In the remainder of this section, we provide a brief

overview of the search engine and equivalence checker underlying
the Solis summary synthesis engine.

4.1 Type-Directed Search Engine
Similar to several other synthesizers [4, 14, 17], Solis enumerates
DSL programs in increasing order of complexity and leverages prop-
erties of the input loop to avoid enumerating useless summaries.
Specifically, our search engine utilizes both type information as
well as basic static analysis of the loop body to prune large parts of
the search space.

In more detail, Table 5 presents necessary conditions for our
search engine to enumerate a given Consul statement. These pre-
conditions make use of two main types of information:

• Variable types: Given a variable 𝑣 , we write 𝜏 (𝑣) = 𝜏1 to
indicate that the type of variable 𝑣 is 𝜏1. If 𝜏1 = Map, the
notation 𝜏2 ⇒ 𝜏3 indicates that the key type of the map is
𝜏2 and value type is 𝜏3.

• Read-write sets: For each loop 𝐿 in the original contract,
we compute the set of variables it reads from and the set
of variables it writes to. We use the notation 𝑣 ∈ Reads(𝐿)
(resp. 𝑣 ∈ Writes(𝐿)) to indicate that 𝑣 is read from (resp.
written to) in loop 𝐿.

Since the pre-conditions in Table 5 are fairly self-explanatory,
we do not describe all of them in detail but focus on a few example
constructs:

• map: According to the second row of Table 5, Solis only
enumerates the statement 𝑣1 = map(𝑣2, 𝜑, 𝐹) if both 𝑣1 and
𝑣2 have type mapping and 𝑣1 is written to by the input loop
whereas 𝑣2 is read from.

• foldlNested: For an input loop 𝐿, the summary should only
contain the statement 𝑣1 = foldlNested(𝑣2, 𝑣3, 𝑓 , 𝑖) if 𝑣1 has
type Int and the value type of 𝑣3 is the same as the key type
of 𝑣2. In addition, 𝑣1 must be written to and 𝑣2, 𝑣3 must be
read from.

• Composition: According to the first row of Table 5, differ-
ent statements in the summary should not write to the same
variable. This rule prevents Solis from enumerating useless

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

SOLIS
Type-directed

 Search
Equivalence

 CheckerLoop Consul
Summary

Figure 4: Overview of Solis

Statement Pre-condition
𝑆1; 𝑆2 Writes(𝑆1) ∩Writes(𝑆2) = ∅

𝑣1 = map(𝑣2, 𝜑, 𝐹) 𝜏 (𝑣1) = 𝜏 (𝑣2) = Map ∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2 ∈ Reads(𝐿)
𝑣1 = foldl(𝑣2, 𝜑, 𝑓 , 𝑖) 𝜏 (𝑣1) = Int ∧ 𝜏 (𝑣2) = Map ∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2 ∈ Reads(𝐿)
𝑣1 = zip(𝑣2, 𝑣3, 𝜑, 𝑓) 𝜏 (𝑣1) = 𝜏 (𝑣2) = 𝜏 (𝑣3) = Map ∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2, 𝑣3 ∈ Reads(𝐿)

𝑣1 = mapNested(𝑣2, 𝑣3, 𝜑, 𝐹) 𝜏 (𝑣1) = Map ∧ 𝜏 (𝑣2) = (𝜏1 ⇒ 𝜏2) ∧ 𝜏 (𝑣3) = (𝜏3 ⇒ 𝜏1) ∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2, 𝑣3 ∈ Reads(𝐿)
𝑣1 = foldlNested(𝑣2, 𝑣3, 𝜑, 𝑓 , 𝑖) 𝜏 (𝑣1) = Int ∧ 𝜏 (𝑣2) = (𝜏1 ⇒ 𝜏2) ∧ 𝜏 (𝑣3) = (𝜏3 ⇒ 𝜏1) ∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2, 𝑣3 ∈ Reads(𝐿)

𝑣1 = zipNestedSym(𝑣2, 𝑣3, 𝑣4, 𝜑, 𝑓) 𝜏 (𝑣1) = Map ∧ 𝜏 (𝑣2) = 𝜏 (𝑣3) = (𝜏1 ⇒ 𝜏2) ∧ 𝜏 (𝑣4) = (𝜏3 ⇒ 𝜏1)
∧𝑣1 ∈ Writes(𝐿) ∧ 𝑣2, 𝑣3, 𝑣4 ∈ Reads(𝐿)

𝑣1 = zipNestedASym(𝑣2, 𝑣3, 𝑣4, 𝜑, 𝑓) 𝜏 (𝑣1) = Map ∧ 𝜏 (𝑣2) = (𝜏1 ⇒ 𝜏2) ∧ 𝜏 (𝑣4) = (𝜏3 ⇒ 𝜏1) ∧ 𝜏 (𝑣3) = (𝜏3 ⇒ 𝜏2)
∧ 𝑣1 ∈ Writes(𝐿) ∧ 𝑣2, 𝑣3, 𝑣4 ∈ Reads(𝐿)

require(𝑣, 𝜑1, 𝜑2) containsRequire(𝐿) ∧ 𝑣 ∈ Reads(𝐿)
requireNested(𝑣1, 𝑣2, 𝜑1, 𝜑2) containsRequire(𝐿) ∧ 𝑣1, 𝑣2 ∈ Reads(𝐿) ∧ 𝜏 (𝑣1) = (𝜏1 ⇒ 𝜏2) ∧ 𝜏 (𝑣2) = (𝜏3 ⇒ 𝜏1)

transfer(𝑣1, 𝑣2, 𝐹) containsTransfer(𝐿) ∧ 𝜏 (𝑣1) = (𝜏1 ⇒ Address) ∧ 𝜏 (𝑣2) = (𝜏2 ⇒ Int) ∧ 𝑣1, 𝑣2 ∈ Reads(𝐿)
Table 5: Pruning rules used by the search engine of Solis

1 (define (check -eq fun1 fun2 input K)

2 (define i-state (initial -state input))
3 (define o1 (interpret fun1 i-state K))

4 (define o2 (interpret fun2 i-state K))

5 (verify (assert (equal? o1 o2)))

Figure 5: Core idea behind equivalence checker

summaries where the effect of one summary statement is
overridden by a subsequent one.

For a given Solidity loop 𝐿, there are typically not too many Consul
statements that meet the pre-conditions from Table 5; thus, our
pre-conditions are effective at pruning a large part of the search
space during enumeration.

In addition to the rules shown in Table 5, Solis uses several
other type-directed rules to prune the space of functions it needs
to consider. For example, consider again the statement:

𝑣1 = map(𝑣2, 𝜑, 𝜆𝑥 .𝑡)

Clearly, for this program to type-check, the type of 𝑡 must be the
same as the value type of 𝑣1. Thus, Solis can also use type-based
reasoning when filling in lambda expressions used in Consul con-
structs.

4.2 Equivalence Checker
Once Solis generates a candidate summary, it needs to check
whether the summary is equivalent to the original loop 𝐿. Towards
this goal, we first convert the Consul summary 𝑆 into equivalent
Solidity code 𝑆 ′ using syntax-directed translation (see Appendix

B). However, since there is no off-the-shelf equivalence checker for
Solidity programs, we also implemented a (bounded) verifier for
checking equivalence between a pair of Solidity programs.

The key idea underlying our equivalence checker is illustrated
in the code shown in Figure 5. Specifically, the checker takes as
input two Solidity programs fun1 and fun2 as well as a symbolic
input called input and verification bound 𝐾 that controls how
many times the loops are unrolled. Then, we symbolically evaluate
both fun1 and fun2 on the symbolic input state to obtain a pair
of symbolic output states o1 and o2. If the resulting output states
are equal, this constitutes a proof (up to bound 𝐾) that the Consul
summary is equivalent to the original loop.

We have implemented our equivalence checker on top of the
Rosette framework [44] and leverage its SMT encoding facilities as
well as its symbolic evaluation engine. Specifically, we implemented
a translator from Solidity code to an intermediate representation
that can be symbolically evaluated by Rosette.

4.3 Compositional Synthesis
As is common in program synthesis, the search space of programs
we must consider in Consul increases exponentially in the number
of statements. To scale our synthesis procedure to larger Consul
programs, we introduce compositional synthesis, which enables
synthesis of complex summaries by synthesizing their constituent
parts and then composing them together.

In particular, compositional synthesis works by independently
synthesizing partial summaries for each variable written in the
loop, and then composing them together with Consul’s sequencing
operator. Consider the following loop, which can be expressed in

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

Size # Loops Time-outs Precise sum. Partial sum. Overall (incl. T/O) Overall (excl. T/O)
1 352 7 (2%) 266 (76%) 0 (0%) 76% 77%
2 443 42 (9%) 241 (54%) 84 (19%) 73% 81%
3 164 75 (46%) 22 (14%) 17 (10%) 24% 44%
4 82 0 (0%) 9 (11%) 21 (26%) 37% 37%
≥ 5 179 49 (27%) 16 (9%) 8 (4%) 13% 18%

All loops 1220 173 (14%) 554 (45%) 130 (11%) 56% 65%
Table 6: Evaluation Results

Consul as a fold over arr (stored in acc) followed by a map over
arr (stored in arr).

1 for(uint i = 0; i < len; i++){

2 acc += arr[i];

3 arr[i] *= 5;

4 }

We start by synthesizing a single-statement summary for each
variable which is written in the loop; in this case we synthesize the
following two summaries:

𝑎𝑐𝑐 = foldl(𝑎𝑟𝑟, 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 (𝑥, 0, 𝑙𝑒𝑛), +, 𝑎𝑐𝑐)
𝑎𝑟𝑟 = map(𝑎𝑟𝑟, 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 (𝑥, 0, 𝑙𝑒𝑛), 𝑥 ∗ 5)

Finally, we compose together the two summaries using the sequenc-
ing operator ; which gives us the complete summary.

While this optimization does not affect the soundness of our
synthesis algorithm, it does make it incomplete. In particular, this
algorithm will not be able to synthesize a Consul program 𝑃 =

𝑆1; 𝑆2 where statement 𝑆2 depends on statement 𝑆1 – that is, where
variables read in 𝑆2 are written in 𝑆1. This is because there is no
valid single-statement partial summary which captures 𝑆2 without
𝑆1. In practice, we observed relatively few loops with dependent
statements, and thus found it worth sacrificing completeness for
scalability.

5 EVALUATION
To evaluate what percentage of Solidity loops can be summarized
in our proposed Consul language, we used Solis to synthesize
summaries for real-world Solidity loops. The main goal of our
evaluation is to answer the following research questions:
RQ1 What percentage of loops can be precisely (or at least par-

tially) summarized in the Consul language?
RQ2 What is the relative frequency of Consul constructs that are

used in Solidity loop summaries?
RQ3 What types of loops cannot be summarized using Solis?

5.1 Experimental Set-up
We conduct this experiment on approximately 1,200 contracts that
contain loops. Specifically, to perform this experiment, we extract
all loops contained in these 1200 contracts and then filter out loops
that contain Solidity features that cannot be handled by Solis. Such
features include user-defined constructs, multi-dimensional arrays,
and calls to functions that cannot be analyzed by Solis. Using
this methodology, we obtained a total of 1220 benchmarks, which
corresponds to approximately 40% of all loops found within the
original 1,000 Solidity contracts.

All experiments reported in this section are conducted on a
t3.2xlarge machine on Microsoft Azure with an Intel Xeon Plat-
inum 8000 CPU and 32G of memory, running the Ubuntu 18.04
operating system and using a timeout of 120 minutes for each loop.

5.2 Key Results
We now summarize our key findings as they relate to the research
questions posed earlier.

Table 6 presents the result of running Solis over our 1220 bench-
marks. Here, the first column shows the size of the loop body in
terms of lines of Solidity code, and the second column shows the
total number of loops of that size. The next column labeled “Time-
outs" shows the number of benchmarks for which Solis fails to
finish its exploration within the given time limit. Next, the col-
umn labeled “Precise sum." shows the number of loops for which
Solis is able to find a precise summary – that is, the generated
summary is exactly equivalent to the original loop. On the other
hand, the column labeled “Partial sum." shows the number of loops
for which Solis can generate a partial, but not precise, summary
– that is, a summary which over-approximates the loop’s actual
post-condition. Finally, the column labeled “Overall (incl. T/O)"
shows the percentage of loops for which Solis can generate any
summary (either precise or partial), including those benchmarks
where we encounter a time-out. The last column reports the same
information but excludes those benchmarks on which Solis times-
out. In the remainder of this discussion, we mostly focus on those
benchmarks on which Solis does not time out, as our primary goal
is to investigate Solidity loops rather than the Solis synthesizer.

As we can see from Table 6, Solis can generate a summary for
65% of the benchmarks, and we find that these summaries are equiv-
alent to the original loop for 53% of the benchmarks on which we
do not observe a time-out. As we can also see from Table 6, the
percentage of loops that can be summarized by Solis is smaller for
larger loops. However, upon manual inspection, we find that this
is often due to the incomplete decomposition strategy described
in Section 4.3. In particular, while this decomposition allows our
synthesis technique to be more scalable, it sacrifices completeness
in situations where one side effect of the loop is dependent upon
another one. Thus, in reality, the percentage of loops that have a
Consul summary is much higher than the data presented in Table 6.

Result for RQ1: At least 56% of the loops in Solidity con-
tracts have a summary that is expressible in the Consul
loop summarization DSL, and 81% of these summaries are
equivalent to the original loop.

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

Figure 6: Frequency of Consul constructs

Next, to answer our second research question, Figure 6 shows
the relative frequency of each Consul construct in the generated
summaries. For each DSL operator (map, fold etc), we group to-
gether its nested and non-nested version – e.g., the bar labeled zip
includes all three variants of the zip construct. Finally, the last two
columns differentiate between the nested and non-nested version
of the DSL operators. For example, the bar labeled “nested” in-
cludes mapNested, foldlNested, requireNested and the two nested
variants of zip.

As we can see from Figure 6, map is the most commonly occur-
ring DSL construct, followed by the require operator. 5 The next two
most common operators are foldl and zip, and by far the least com-
mon construct is transfer. Another interesting observation from
Figure 6 is that the nested versions of the operators occur more
frequently than the non-nested versions (57% vs. 43%).

Result for RQ2: The most commonly occurring Consul
construct in the synthesized summaries ismap. Furthermore,
the nested variants of Consul operators occur more com-
monly than their non-nested variants.

Finally, to answer our third research question, we give some
examples of Solidity loops for which Solis was unable to generate
a useful summary despite exploring the whole search space (i.e.,
no time-out). As expected, there are two reasons why Solis fails to
summarize a loop’s behavior: (1) the semantics of the loop cannot
be captured by the Consul DSL, or (2) synthesis fails due to the
incomplete decomposition heuristics employed by Solis.

To understand the latter issue, consider the last example from
Table 4. Here, because there is a dependency between the loop’s mul-
tiple side effects (e.g., the last foldl operation depends on the earlier
map operation), we cannot generate the summary in a composi-
tional way, so the decomposition strategy described in Section 4.3
fails to work. As a result, Solis is unable to capture the loop’s effect

5Part of the reason that require is so common is due to the fact that Solis summa-
rizes require statements with conjunctions in the Solidity code with multiple require
statements.

1 for(uint i = 0; i < len; i++){

2 sig = bytes4(uint(sig) + uint(_data[i]) *

3 (2 ** (8 * (len - 1 - i))));

4 }

1 while(first < last){

2 uint256 check = (first + last) / 2;

3 if ((n >> check) == 0) {

4 last = check;

5 } else {

6 first = check + 1;

7 }

8 }

1 for(uint256 j = 10; j > i; j--){

2 if (topWinners[j - 1] != msg.sender) {

3 topWinners[j] = topWinners[j - 1];

4 } else {

5 for (uint256 k = j; k < 10; k++) {

6 topWinners[k] = topWinners[k + 1];

7 }

8 }

9 }

Figure 7: Example Solidity loops which cannot be expressed
in Consul

on the variable called total even though the loop’s behavior can
be precisely summarized in the Consul DSL.

Beyond limitations of the Solis tool chain, there are, of course,
also Solidity loops that fundamentally cannot be expressed in Con-
sul. We show three such examples in Figure 7.

For instance, consider the first loop from Figure 7. At first glance,
the loop appears to do a fold over the array called _data. However,
the expression on the right-hand side includes subtraction of the
iterator i, which cannot be captured by any of the accumulator
functions in Consul.

The second loop in Figure 7 does not access a collection as most
loops do (see Section 2), but instead performs complicated arith-
metic operations on the two integers first and last. However,
we intentionally did not try to capture such numeric summaries in
the Consul DSL because (a) such behavior is not as common, and
(b) there is already a rich literature of program analysis techniques
for inferring numeric invariants (e.g., based on abstract interpreta-
tion [10, 36], constraint solving [9, 23], Craig interpolation [24, 35],
abduction [11, 33] etc.).

The third loop in Figure 7 involves a conditional whose else
branch contains a nested loop.While the nested loop has a summary
that is expressible in Consul (and which can also be synthesized
by Solis), the behavior of the outer loop does not appear to be
expressible in our summarization language.

Result for RQ3: There are two reasons why Solis may fail
to generate a useful loop summary. One reason is due to the
incomplete decomposition heuristic described in Section 4.3.
Another reason is the presence of complex arithmetic or
nested loops that result in behavior that is not easily express-
ible in the Consul DSL.

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

5.3 Threats to validity
We believe there are two major threats to the validity of our con-
clusions, which we explain below.

Benchmark Selection. As mentioned earlier, we were able to eval-
uate Solis on 1220 of the 22,685 loops considered in Section 2 due to
limitations of our implementation and time restrictions. However,
we believe that our benchmarks are representative enough in terms
of both complexity and diversity.

Validity of Summaries. As mentioned in Section 4, Solis uses
bounded verification when checking equivalence. In theory, this
means that some of the summaries synthesized by Solis may not
actually be equivalent to the original loop. However, based on our
manual inspection of randomly sampled summaries, we find that
the loops synthesized by Solis are indeed equivalent to the original
loop.

DSL Construction. Since the constructs of Consul in Figure 3 are
designed manually by us, they may not be representative enough to
cover all of the common loop patterns found in Solidity. To mitigate
this concern, our DSL design was guided by static analysis, semantic
clustering, and random sampling as detailed in Section 2.

6 RELATEDWORK
Program analysis for smart contracts has been an active research
topic in recent years. In what follows, we survey recent research
on smart contract analysis as well as a few other topics relevant to
this work.

Program analyzers for smart contracts. Existing tools for vetting
smart contracts are based on a variety of different approaches,
including symbolic execution [1, 2, 34, 38], abstract interpreta-
tion [20, 45], interactive theorem proving [21, 25], and testing [26].
To the best of our knowledge, none of these existing techniques
aim to infer precise loop invariants that capture a loop’s side effects
on contract state. Thus, existing techniques are either unsound or
grossly imprecise in the presence of loops, or they require manu-
ally provided invariants from the user. We view this work as being
complementary to existing efforts in the space of program analysis
for smart contracts. In particular, our work brings clarity about the
nature of loops that occur in smart contracts and takes a first step
towards automatically inferring their semantics.

Loop summarization. Generally speaking, loop summarization
refers to the task of replacing a loop 𝐿 with a loop-free code snippet
𝑆 (e.g., that over-approximates the actual behavior of the loop [19,
29, 42]). Loop summarization has been shown to be very helpful in
program analysis, both in the context of verification [28] as well as
symbolic execution [19]. Loop summarization has also been shown
to be effective for program optimization. For example, the QBS tool
by Cheung et al. improves program performance by summarizing
Java loops using SQL statements [8]. This work is particularly re-
lated to ours in that they take a program synthesis based approach
towards loop summarization; however, they perform synthesis us-
ing constraint solving as opposed to type directed search. More
generally, compared to all existing work on loop summarization,
the key contribution of this paper is to provide a formalism (i.e.,
domain-specific language) that can be used to summarize behaviors

of Solidity loops. In addition, we also take a first step towards loop
summarization for smart contracts.

Equivalence checking. Checking equivalence between a pair of
programs is a classical relational verification problem and arises in
many different contexts, including translation validation [37], dif-
ferential program analysis [31, 46], and regression verification [13].
Generally speaking, there are two different approaches to check-
ing equivalence. One approach is to construct a so-called product
program 𝑃 such that two programs 𝑃1 and 𝑃2 are equivalent if and
only if 𝑃 does not have failing assertions [5, 6, 32]. An alternative
approach is to utilize program logics, such as relational Hoare logic,
that can be used to directly prove equivalence [7, 43]. In this work
we take the former approach and construct a very simple product
program through sequential composition. This simple approach is
sufficient in our setting because our equivalence checker is based
on bounded verification. While more sophisticated product con-
struction mechanisms may better facilitate unbounded verification
of Solidity programs, this is an orthogonal problem that we leave
to future work.

Program synthesis. This work is related to a long list of research
papers on program synthesis in that we automatically synthesize a
DSL program that satisfies the given specification (in our case, the
original Solidity loop). While program synthesis is a very active
research area with a multitude of different techniques and appli-
cations [4, 14, 15, 17, 22, 44], our work is most similar to inductive
synthesizers based on explicit search [4, 14, 15, 17]. More concretely,
similar to prior efforts in this space [16, 17, 41], our synthesis tech-
nique uses type-based reasoning to significantly prune the search
space but also utilizes basic static analysis of the original loop to
further reduce the space of candidate summaries.

7 CONCLUSION AND FUTUREWORK
In this paper, we performed a large-scale investigation of loops
found in Solidity smart contracts, including both their syntactic and
semantic features. Based on these findings, we proposed a DSL for
capturing common behaviors of Solidity loops and built a program
synthesis toolchain called Solis for automatic loop summarization
in smart contracts. Our experiments indicate that at least 56% of
loops can be summarized using our proposed DSL and 81% of these
summaries are equivalent to the original loop.

There are several directions for future work. First, while we have
taken a first step towards loop summarization in smart contracts,
our proposed tool chain sacrifices completeness for better scalability
and therefore fails to generate summaries for larger loops even
though an equivalent Consul summary exists. Thus, we plan to
investigate better loop summarization techniques in future work.
Second, we are interested in integrating our loop summarization
method with existing verification tools to further automate the
process of proving functional correctness of smart contracts.

REFERENCES
[1] 2016. Manticore. https://github.com/trailofbits/manticore/. [Online; accessed

01/09/2019].
[2] 2018. Mythril Classic. https://github.com/ConsenSys/mythril-classic. [Online;

accessed 12/01/2018].
[3] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit

Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund

https://github.com/trailofbits/manticore/
https://github.com/ConsenSys/mythril-classic

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthe-
sis. In Dependable Software Systems Engineering. 1–25.

[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumera-
tive Program Synthesis via Divide and Conquer. In Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. 319–336.

[5] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verifica-
tion Using Product Programs. In FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.
200–214.

[6] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2016. Product programs
and relational program logics. J. Log. Algebraic Methods Program. 85, 5 (2016),
847–859.

[7] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational
verification using reinforcement learning. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 141:1–141:30.

[8] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
database-backed applications with query synthesis. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. 3–14.

[9] Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma. 2003. Lin-
ear invariant generation using non-linear constraint solving. In International
Conference on Computer Aided Verification. Springer, 420–432.

[10] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. 84–96.

[11] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Inductive invariant
generation via abductive inference. Acm Sigplan Notices 48, 10 (2013), 443–456.

[12] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In Proceedings of the 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE 2019,
Montreal, QC, Canada, May 27, 2019. 8–15.

[13] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias
Ulbrich. 2014. Automating regression verification. InACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September
15 - 19, 2014. 349–360.

[14] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proceedings of the 39th ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018. 420–435.

[15] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
2017. Component-based synthesis of table consolidation and transformation
tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. 422–436.

[16] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas Reps. 2017.
Component-Based Synthesis for Complex APIs. In Proc. Symposium on Principles
of Programming Languages. ACM, 599–612.

[17] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure
transformations from input-output examples. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015. 229–239.

[18] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng
Yan. 2010. Synthesizing Near-Optimal Malware Specifications from Suspicious
Behaviors. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. 45–60.

[19] Patrice Godefroid and Daniel Luchaup. 2011. Automatic Partial Loop Summa-
rization in Dynamic Test Generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (Toronto, Ontario, Canada) (IS-
STA ’11). Association for Computing Machinery, New York, NY, USA, 23–33.
https://doi.org/10.1145/2001420.2001424

[20] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas conditions in Ethereum
smart contracts. In Proc. International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 116:1–116:27.

[21] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In Principles
of Security and Trust - 7th International Conference, POST 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. 243–269.

[22] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proc. Symposium on Principles of Programming Languages.
ACM, 317–330.

[23] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Pro-
gram analysis as constraint solving. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 281–292.

[24] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan.
2004. Abstractions from proofs. ACM SIGPLAN Notices 39, 1 (2004), 232–244.

[25] Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interactive Theo-
rem Provers. In Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers. 520–535.

[26] Bo Jiang, Ye Liu, andW. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts for
vulnerability detection. In Proc. International Conference on Automated Software
Engineering. 259–269.

[27] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In Proc. The Network and Distributed System
Security Symposium.

[28] Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. 2008. Loop Summarization Using Abstract Trans-
formers. In Proceedings of the 6th International Symposium on Automated Tech-
nology for Verification and Analysis (Seoul, Korea) (ATVA ’08). Springer-Verlag,
Berlin, Heidelberg, 111–125. https://doi.org/10.1007/978-3-540-88387-6_10

[29] Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. 2009. Loopfrog: A Static Analyzer for ANSI-C
Programs. In ASE 2009, 24th IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand, November 16-20, 2009. 668–670.

[30] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. 2018. Formal
Specification and Verification of Smart Contracts for Azure Blockchain. CoRR
abs/1812.08829 (2018).

[31] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
2012. SYMDIFF: A Language-Agnostic Semantic Diff Tool for Imperative Pro-
grams. In Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings. 712–717.

[32] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel.
2013. Differential assertion checking. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. 345–355.

[33] Boyang Li, Isil Dillig, Thomas Dillig, Ken McMillan, and Mooly Sagiv. 2013.
Synthesis of circular compositional program proofs via abduction. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 370–384.

[34] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proc. Conference on Computer and
Communications Security. 254–269.

[35] Kenneth L McMillan. 2006. Lazy abstraction with interpolants. In International
Conference on Computer Aided Verification. Springer, 123–136.

[36] Antoine Miné. 2006. The octagon abstract domain. Higher-order and symbolic
computation 19, 1 (2006), 31–100.

[37] George C. Necula. 2000. Translation validation for an optimizing compiler. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June
18-21, 2000. 83–94.

[38] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Rosu. 2018.
A formal verification tool for Ethereum VM bytecode. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. 912–915.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[40] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
Symposium on Security and Privacy, SP. 18–20.

[41] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
synthesis from polymorphic refinement types. Proc. Conference on Programming
Language Design and Implementation (2016), 522–538.

[42] Jake Silverman and Zachary Kincaid. 2019. Loop Summarization with Ratio-
nal Vector Addition Systems (extended version). CoRR abs/1905.06495 (2019).
arXiv:1905.06495 http://arxiv.org/abs/1905.06495

[43] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety
properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016. 57–69.

[44] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine
for solver-aided host languages. In Proc. Conference on Programming Language
Design and Implementation. 530–541.

[45] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. In Proc. Conference on Computer and Communications Security.
67–82.

https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-540-88387-6_10
https://arxiv.org/abs/1905.06495
http://arxiv.org/abs/1905.06495

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

[46] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing data-
base programs for schema refactoring. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019. 286–300.

[47] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. 1105–1116.

Demystifying Loops in Smart Contracts ASE ’20, September 21–25, 2020, Melbourne, Australia

A SEMANTIC FEATURES USED FOR
CLUSTERING

In this section, we describe the semantic features we used when
performing our clustering analysis. These features are obtained
by constructing a type of program dependence graph (PDG) and
extracting various types of information from the paths of the corre-
sponding PDG.

For our purposes, a program dependence graph G is a tuple
(𝑁, 𝐸C, 𝐸D) where 𝑁 = 𝑁I ∪ 𝑁W ∪ 𝑁R and 𝑁I, 𝑁W, and 𝑁R corre-
spond to variables of array indices, variables that are written to,
and variables (other than those that are used as array indices) that
are read from, respectively. 𝐸C are edges from 𝑁R to 𝑁W, and 𝐸D
are edges from nodes in 𝑁I to 𝑁W. Intuitively, an edge (𝑢, 𝑣) ∈ 𝐸D
indicates that a variable 𝑢 is used as an index into collection 𝑣 . An
edge in 𝐸C models other types of read-write dependency.

Figure 8 gives a few examples of Solidity loops and their corre-
sponding PDG representation. Specifically, nodes in 𝑁I, 𝑁W, and
𝑁R are colored in red, purple, and grey, respectively. Also, dashed
arrows encodes edges in 𝐸D while solid arrows denote edges in 𝐸C.

Once we construct the graph representation, we extract the
following features from the PDG:

Path related features. The following 8 features are related to paths
in the PDG.

• Maximum and minimum number of any path from a a node
in 𝑁I to a node in 𝑁W.

• Maximum and minimum number of 𝐸D path from a node in
𝑁I to a node in 𝑁W.

• Maximum and minimum number of 𝐸C paths from a node
in 𝑁I to a node in 𝑁W.

• Maximum and minimum number of mixed paths (involving
both 𝐸D and 𝐸C edges) from a node in 𝑁I to a node in 𝑁W.

Degree related features. The following 24 features are related to
degrees of nodes in the PDG.

• Maximum and minimum number of mixed-edge in-degrees
of a node in 𝑁W.

• Maximum and minimum number of mixed-edge out-degrees
of a node in 𝑁W.

• Maximum and minimum number of 𝐸D-only in-degree of a
node in 𝑁W.

• Maximum and minimum number of 𝐸D-only out-degree of
a node in 𝑁W.

• Maximum and minimum number of 𝐸C-only in-degree of a
node in 𝑁W.

• Maximum and minimum number of 𝐸C-only out-degree of
a node in 𝑁W.

• Maximum and minimum number of mixed-edge in-degrees
of a node in 𝑁I.

• Maximum and minimum number of mixed-edge out-degrees
of a node in 𝑁I.

• Maximum and minimum number of 𝐸D-only in-degree of a
node in 𝑁I.

• Maximum and minimum number of 𝐸D-only out-degree of
a node in 𝑁I.

• Maximum and minimum number of 𝐸C-only in-degree of a
node in 𝑁I.

• Maximum and minimum number of 𝐸C-only out-degree of
a node in 𝑁I.

Other features. The following 5 features are related to degrees of
nodes in the PDG.

• Maximum and minimum number of cycles involving a single
𝑁W node in the PDG.

• Maximum, minimum and average path length from an 𝑁I
node to an 𝑁W node in the PDG.

B SEMANTICS OF DSL CONSTRUCTS IN
TERMS OF SOLIDITY CODE

In this Appendix, we provide a more formal semantics of Consul
constructs in terms of their translation to Solidity code. In particular,
the left column in Table 4 shows a Consul construct and the right
column shows its corresponding Solidity equivalent.

ASE ’20, September 21–25, 2020, Melbourne, Australia Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu Lahiri, and Isil Dillig

Figure 8: Modeling the semantics of loops using program dependence graph.

Consul Construct Solidity Loop Equivalent

m4 = zipNestedASym(m1,m2,m3,𝜑 ,𝑓)

for(k ∈ keys(m3) ∧ 𝜑(k, m1[m3[k]])){

m4[m3[k]] = 𝑓 (m1[m3[k]], m2[k]);

}

m4 = zipNestedSym(m1,m2,m3,𝜑 ,𝑓)

for(k ∈ keys(m3) ∧ 𝜑(k, m1[m3[k]])){

m4[m3[k]] = 𝑓 (m1[m3[k]], m2[m3[k]]);

}

m3 = zip(m1,m2,𝜑 ,𝑓)

for(k ∈ keys(m1) ∧ 𝜑(k, m1[k])){

m3[k] = 𝑓 (m1[k], m2[k]);

}

m3 = mapNested(m1, m2, 𝜑 , 𝐹)

for(k ∈ keys(m2) ∧ 𝜑(k, m1[m2[k]])){

m3[m2[k]] = 𝐹 (m1[m2[k]]);

}

m2 = map(m1, 𝜑 , 𝐹)

for(k ∈ keys(m1) ∧ 𝜑(k, m1[k])){

m2[k] = 𝐹 (m1[k]);

}

v = foldl(m, 𝜑 , 𝑓 , acc)

v = acc;

for(k ∈ keys(m) ∧ 𝜑(k, m[k])){

v = 𝑓 (v, m[k]);

}

v = foldlNested(m1, m2, 𝜑 , 𝑓 , acc)

v = acc;

for(k ∈ keys(m2) ∧ 𝜑(k, m1[m2[k]])){

v = 𝑓 (v, m1[m2[k]]);

}

require(m, 𝜑1, 𝜑2)

for(k ∈ keys(m) ∧ 𝜑1(k, m[k])){

require(𝜑2(k, m[k]));

}

requireNested(m1, m2, 𝜑1, 𝜑2)

for(k ∈ keys(m2) ∧ 𝜑1(k, m1[m2[k]])){

require(𝜑2(k, m1[m2[k]]));

}

transfer(m1, m2, 𝐹 , 𝜑)

for(k ∈ keys(m1) ∧ 𝜑(k, m1[k])){

transfer(m1[k], 𝐹 (m2[k]));

}

Table 7: Consul construct equivalents. We omit lambdas to improve readability.

	Abstract
	1 Introduction
	2 A Study of Loops in Smart Contracts
	2.1 Frequency of Loops
	2.2 Nature of Loops, Syntactically
	2.3 Nature of Loops, Semantically
	2.4 Clustering Loops by Semantic Properties

	3 A DSL for Loop Summarization
	3.1 Summarizing Side Effects on Contract State
	3.2 Summarizing Transfers and Requirements
	3.3 Examples

	4 Synthesis of Loop Summaries
	4.1 Type-Directed Search Engine
	4.2 Equivalence Checker
	4.3 Compositional Synthesis

	5 Evaluation
	5.1 Experimental Set-up
	5.2 Key Results
	5.3 Threats to validity

	6 Related Work
	7 Conclusion and Future Work
	References
	A Semantic Features used for Clustering
	B Semantics of DSL Constructs in terms of Solidity Code

