
Precise Detection of Side-Channel Vulnerabilities using
Quantitative Cartesian Hoare Logic

Jia Chen
University of Texas at Austin

Austin, Texas
jchen@cs.utexas.edu

Yu Feng
University of Texas at Austin

Austin, Texas
yufeng@cs.utexas.edu

Isil Dillig
University of Texas at Austin

Austin, Texas
isil@cs.utexas.edu

ABSTRACT
This paper presents Themis, an end-to-end static analysis tool for
finding resource-usage side-channel vulnerabilities in Java appli-
cations. We introduce the notion of ϵ-bounded non-interference,
a variant and relaxation of Goguen and Meseguer’s well-known
non-interference principle. We then present Quantitative Cartesian
Hoare Logic (QCHL), a program logic for verifying ϵ-bounded non-
interference. Our tool, Themis, combines automated reasoning in
CHL with lightweight static taint analysis to improve scalability.
We evaluate Themis on well known Java applications and demon-
strate that Themis can find unknown side-channel vulnerabilities
in widely-used programs. We also show that Themis can verify
the absence of vulnerabilities in repaired versions of vulnerable
programs and that Themis compares favorably against Blazer, a
state-of-the-art static analysis tool for finding timing side channels
in Java applications.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Software se-
curity engineering; • Theory of computation → Automated
reasoning;

KEYWORDS
vulnerability detection; side channels; static analysis; verification

1 INTRODUCTION
Side channel attacks allow an adversary to infer security-sensitive
information of a system by observing its external behavior. For in-
stance, in the case of timing side channels, an attacker can learn prop-
erties of a secret (e.g., user’s password) by observing the time it takes
to perform some operation (e.g., password validation). Similarly,
compression side channel attacks allow adversaries to glean confi-
dential information merely by observing the size of the compressed
data (e.g., HTTP response). Numerous research papers and several
real-world exploits have shown that such side channel attacks are
both practical and harmful. For instance, side channels have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134058

used to infer confidential data involving user accounts [26, 38],
cryptographic keys [5, 19, 45], geographic locations [62], and medi-
cal data [22]. Recent work has shown that side channels can also
lead to information leakage in cyber-physical systems [23].

Side channel attacks are made possible due to the presence of
an underlying vulnerability in the system. For example, timing
attacks are feasible because the application exhibits different timing
characteristics based on some properties of the secret. In general,
the most robust defense against side-channel attacks is to eradicate
the underlying vulnerabilities by ensuring that the resource usage
of the program (time, space, power etc.) does not vary with respect
to the secret. Unfortunately, it can be challenging to write programs
in away that follows this discipline, and side-channel vulnerabilities
continue to be uncovered on a regular basis in real-world security-
critical systems [5, 19, 36, 68].

Our goal in this paper is to help programmers develop side-
channel-free applications by automatically analyzing correlations
between variations in resource usage and differences in security-
sensitive data. In particular, given a program P and a “tolerable"
resource deviation ϵ , we would like to verify that the resource usage
of P does not vary by more than ϵ no matter what the value of the
secret. Following the terminology of Goguen and Meseguer [34],
we refer to this property as ϵ-bounded non-interference. Intuitively,
a program that violates ϵ-bounded non-interference for even large
values of ϵ exhibits significant secret-induced differences in re-
source usage.

The problem of verifying ϵ-bounded non-interference is chal-
lenging for at least two reasons: First, the property that we would
like to verify is an instance of a so-called 2-safety property [66] that
requires reasoning about all possible interactions between pairs of
program executions. Said differently, a witness to the violation of
ϵ-bounded interference consists of a pair of program runs on two
different secrets. Unlike standard safety properties that have been
well-studied in verification literature and for which many auto-
mated tools exist, checking 2-safety is known to be a much harder
problem. Furthermore, while checking 2-safety can in principle be
reduced to standard safety via so-called product construction [12, 14]
such a transformation either causes a blow-up in program size [12],
thereby resulting in scalability problems, or yields a program that
is practically very difficult to verify [14].

In this work, we solve these challenges by combining relatively
lightweight static taint analysis with more precise relational verifi-
cation techniques for reasoning about k-safety (i.e., properties that
concern interactions between k program runs). Specifically, our
approach first uses taint information to identify so-called hot spots,
which are program fragments that have the potential to exhibit
a secret-induced imbalance in resource usage. We then use much

https://doi.org/10.1145/3133956.3134058

more precise relational reasoning techniques to automatically verify
that such hot spots do not violate ϵ-bounded non-interference.

At the core of our technique is a new program logic called Quan-
titative Cartesian Hoare Logic (QCHL) for verifying the ϵ-bounded
non-interference property. QCHL leverages recent advances in re-
lational verification by building on top of Cartesian Hoare Logic
(CHL) [65] for verifying k-safety properties. Specifically, QCHL al-
lows us to prove triples of the form ⟨ϕ⟩ S ⟨ψ ⟩, where S is a program
fragment and ϕ,ψ are first-order formulas that relate the program’s
resource usage (e.g., execution time) between an arbitrary pair of
program runs. Starting with the precondition that two runs have
the same public input but different values of the secret, QCHL
proof rules allow us to prove that the difference in resource usage
is bounded from above by some (user-provided) constant ϵ . Similar
to CHL, our QCHL logic allows effective relational verification by
symbolically executing two copies of the program in lockstep. How-
ever, QCHL differs from CHL in that it reasons about the program’s
resource usage behavior and exploits domain-specific assumptions
to improve both analysis precision and scalability. Furthermore,
since the QCHL proof rules are deterministic (modulo an oracle for
finding loop invariants and proving standard Hoare triples), QCHL
immediately lends itself to a fully automated verification algorithm.

We have implemented our proposed solution as a tool called
Themis1, a static analyzer for detecting resource-related side-channels
in Java applications. To demonstrate its effectiveness, we evaluate
Themis by performing a series of experiments. First, we compare
Themis against Blazer [8], a state-of-the-art static analysis tool
for finding timing side channels in Java applications, and we show
that Themis compares favorably with Blazer, both in terms of ac-
curacy and running time. Second, we use Themis to analyze known
side-channel vulnerabilities in security-sensitive Java applications,
such as Tomcat and Spring-Security. We show that Themis can
identify the defects in the original vulnerable versions of these pro-
grams, and that Themis can verify the correctness of their repaired
versions. Finally, we run Themis on several real-world Java appli-
cations and demonstrate that Themis uncovers previously unknown
side-channel vulnerabilities in widely-used programs, such as the
Eclipse Jetty HTTP web server.

Contributions. In summary, this paper makes the following key
contributions:

• We propose the notion of ϵ-bounded non-interference, which
can be used to reason about secret-induced variations in the
application’s resource usage behavior.
• We present Quantitative Cartesian Hoare Logic (QCHL), a
variant of CHL that can be used to verify ϵ-bounded non-
interference.
• We show how to build a scalable, end-to-end side channel
detection tool by combining static taint analysis and QCHL.
• We implement our approach in a tool called Themis and
evaluate it on multiple security-critical Java applications. We
also compare Themis against Blazer, a state-of-the-art tim-
ing side channel detector for Java. Our results demonstrate
that Themis is precise, useful, and scalable.

1Themis is a Greek goddess for justice and balance, hence the name.

1 BigInteger modPow(BigInteger base ,

2 BigInteger exponent , BigInteger modulus) {

3 BigInteger s = BigInteger.valueOf (1);

4 // BigInteger r;

5 int width = exponent.bitLength ();

6 for (int i = 0; i < width; i++) {

7 s = s.multiply(s).mod(modulus);

8 if(exponent.testBit(width - i - 1))

9 s = s.multiply(base).mod(modulus);

10 //else r = s.multiply(base).mod(modulus);

11 }

12 return s;

13 }

Figure 1: Gabfeed code snippet that contains a timing side
channel (without the commented out lines). A possible fix
can be obtained by commenting in lines 4 and 10.

1 {

2 "epsilon":"0", "costModel":"time",

3 "secrets": ["<com.cyberpointllc.stac.auth.

4 KeyExchangeServer:java.math.BigInteger

5 secretKey >"]

6 }

Figure 2: Themis configuration file for Gabfeed.

• We use Themis to find previously unknown security vulner-
abilities in widely-used Java applications. Five of the vulner-
abilities uncovered by Themis were confirmed and fixed by
the developers in less than 24 hours.

Organization. The rest of this paper is organized as follows. We
start by giving an overview of Themis and explain our threat
model (Section 2). After formalizing the notion of ϵ-bounded non-
interference in Section 3, we then present our program logic, QCHL,
for verifying this 2-safety property (Section 4). We then describe
the design and implementation of Themis in Section 5 and present
the results of our evaluation in Section 6. The limitations of the
system as well as comparison against related work are discussed in
Sections 7 and 8.

2 OVERVIEW
In this section, we give an overview of our technique with the aid of
a motivating example and explain the threat model that we assume
throughout the paper.

2.1 Motivating Example
Suppose that Bob, a security analyst at a government agency, re-
ceives a Java web application called Gabfeed, which implements
a web forum that allows community members to post and search
messages2. In this context, both the user names and passwords are
considered confidential and are therefore encrypted before being
stored in the database. Bob’s task is to vet this application and ver-
ify that it does not contain timing side-channel vulnerabilities that
may compromise user name or password information. However,

2Gabfeed is one of the challenge problems from the DARPA STAC project. Please see
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity for more details
about the STAC project.

Gabfeed contains around 30,000 lines of application code (not in-
cluding any libraries); hence, manually searching for a vulnerability
in the application is akin to finding a needle in the haystack.

A security analyst like Bob can greatly benefit from Themis by
using it to automatically verify the absence of side-channel vulner-
abilities in the target application. To use Themis, Bob first identifies
application-specific confidential data (in this case, secretKey) and
annotates them as such in a Themis-specific configuration file, as
shown in Figure 2. In the same configuration file, Bob also tells
Themis the type of side channel to look for (in this case, timing) by
specifying the costModel field and provides a reasonable value of
ϵ , using the epsilon field. Here, Bob wants to be conservative and
initially sets the value of ϵ to zero.

Using the information provided by Bob in the configuration file,
Themis first performs static taint analysis to identify methods that
are dependent on confidential data. In this case, one of the methods
that access confidential data is modPow, shown in Figure 1. Specif-
ically, Themis determines that the second argument (exponent)
of modPow is tainted and marks it as a “hot spot” that should be
analyzed more precisely using relational verification techniques.

In the next phase, Themis uses its Quantitative Cartesian Hoare
Logic (QCHL) verifier to analyze modPow in more detail. Specifically,
the QCHL verifier considers two executions of modPow that have
the same values of base and modulus but that differ in the value
of exponent. In this case, the QCHL verifier fails to prove that
the resource usage of any such two runs is identical and therefore
issues a warning about a possible timing side channel in the modPow
procedure.

Next, Bob wonders whether the imbalance in resource usage is
large enough to be actually exploitable in practice. For this reason,
he plays around with different values of the bound ϵ , gradually
increasing it to larger and larger constants. In the case of timing
side channels, ϵ represents the difference in the executed number of
Java bytecode instructions. However, no matter what value of ϵ Bob
picks, Themis complains about a possible timing side channel. This
observation indeed makes sense because the difference in resource
usage is proportional to the secret and can therefore not be bounded
by a constant.

Bob now inspects the source code of modPow and realizes that a
possible vulnerability arises due to the resource imbalance in the
secret-dependent branch from line 8. To fix the vulnerability, Bob
adds the code from lines 4 and 10, with the goal of ensuring that the
timing behavior of the program is not dependent on exponent. To
confirm that his fix is valid, Bob now runs Themis one more time
and verifies that his repair eliminates the original vulnerability.

2.2 Threat Model
In this paper, we assume that an adversary can observe a program’s
total resource usage, such as timing, memory, and response size.
When measuring resource usage, we further assume that any varia-
tions are caused at the application software level. Hence, side chan-
nels caused by the microarchitecture such as cache contention [70]
and branch prediction [2] are out of the scope of this work. Physical
side channels (including power and electromagnetic radiation [31])
can, in principle, be handled by our our system as long as a precise
model of the corresponding resource usage is given. We assume

that the attacker is not able to observe anything else about the
program other than its resource usage.

One possible real-world setting in which the aforementioned
assumptions hold could be that the attacker and the victim are
connected through a network, and the victim runs a server or P2P
software that interacts with other machines through encrypted
communications. In this scenario, the attacker and the victim are
physically separated; hence, the attacker cannot exploit physical
side channels, such as power usage. Furthermore, the attacker does
not have a co-resident process or VM running on the victim’s
machine, thus it is hard to passively observe or actively manipulate
OS and hardware-level side channels. What the attacker can do is
to either interact with the server and measure the time it takes for
the server to respond, or observe the network traffic and measure
request and response sizes. In our setting, we assume that data
encryption has been properly implemented and the attacker cannot
directly read the contents of any packet.

3 SIDE-CHANNELS AND BOUNDED
NON-INTERFERENCE

In this section, we introduce the property of ϵ-bounded non-interference,
which is the security policy that will be subsequently verified using
the Themis system.

Let P be a program that takes a list of input values a⃗, and let
RP (a⃗) denote the resource usage of P on input a⃗. Following prior
work in the literature [30, 35, 60], we assume that each input is
marked as either high or low, where high inputs denote security-
sensitive data and low inputs denote public data. Let a⃗h (resp. a⃗l)
be the sublist of the inputs that are marked as high (resp. low).
Prior work in the literature [6, 25, 66] considers a program to be
side-channel-free if the following condition is satisfied:

Definition 1. A program P is free of resource-related side-channel
vulnerabilities if

∀a⃗1, a⃗2. (a⃗1
l = a⃗2

l
∧ a⃗1

h , a⃗2
h) ⇒ RP (a⃗1) = RP (a⃗2)

The above definition, which is a direct adaptation of the classical
notion of non-interference [34], states that a program is free of side
channels if the resource usage of the program is deterministic with
respect to the public inputs. In other words, the program’s resource
usage does not correlate with any of its secret inputs.

We believe that Definition 1 is too strong in practice: There are
many realistic programs that are considered side-channel-free but
that would be deemed vulnerable according to Definition 1. For
example, consider a setting in which the attacker is co-located with
the victim on a slow network and the resource usage of the pro-
gram varies by only a few CPU cycles depending on the value of the
high input. Since the resource usage of the program is not identical
for different high inputs, this program is vulnerable according to
Definition 1, but it is practically impossible for an attacker to ex-
ploit this vulnerability given the noise in the program’s execution
environment.

In this paper, we therefore use a relaxed version of the above
definition, with the goal of giving security analysts greater flex-
ibility and helping them understand the severity of the resource
usage imbalance. Specifically, we propose the following variant of
non-interference that we call ϵ-bounded non-interference:

⟨expr⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨expr⟩ ◦ ⟨expr⟩
(◦ ∈ {+,−,×,∨,∧, ...})

⟨stmt⟩ ::= skip | consume(⟨expr⟩) | ⟨var⟩ := ⟨expr⟩

⟨stmts⟩ ::= ⟨stmt⟩ | ⟨stmt⟩; ⟨stmts⟩
| if ⟨expr⟩ then ⟨stmts⟩ else ⟨stmts⟩
| while ⟨expr⟩ do ⟨stmts⟩

⟨params⟩ ::= ⟨param⟩ | ⟨param⟩, ⟨params⟩

⟨param⟩ ::= ⟨annot⟩ ⟨var⟩

⟨annot⟩ ::= low | high

⟨prog⟩ ::= λ⟨params⟩. ⟨stmts⟩

Figure 3: Language used in our formalization

Definition 2. A program P obeys the ϵ-bounded non-interference
property if

∀a⃗1, a⃗2. (a⃗1
l = a⃗2

l
∧ a⃗1

h , a⃗2
h) ⇒ |RP (a⃗1) − RP (a⃗2) | ≤ ϵ

In this definition, any variation in resource usage below ϵ is
deemed to be a minor imbalance that is unlikely to be exploitable
under real-world scenarios. Hence, compared to Definition 1, the
notion of ϵ-bounded interference considers a program to be secure
as long as the difference in resource usage is “minor" according to
the constant ϵ . In practice, the value of ϵ should be chosen by secu-
rity analysts in light of the security requirements of the application
and the underlying threat model. If Definition 2 is violated even
for large values of ϵ , this means the application potentially exhibits
large secret-induced variations in resource usage, and hence, the
underlying vulnerability is potentially more serious.

4 VERIFYING BOUNDED
NON-INTERFERENCE USING QCHL

One of the key technical contributions of this paper is a newmethod
for verifying ϵ-bounded non-interference using QCHL, a variant
of Cartesian Hoare Logic introduced in recent work for verifying
k-safety [65]. As mentioned in Section 1, QCHL proves triples of
the form ⟨ϕ⟩ S ⟨ψ ⟩, where S is a program fragment and ϕ,ψ are first-
order formulas that relate the program’s resource usage between
an arbitrary pair of program runs. Starting with the precondition
that the program’s low inputs are the same for a pair of program
runs, QCHL tries to derive a post-condition that logically implies
ϵ-bounded non-interference.

4.1 Language
We will describe our program logic, QCHL, using the simplified
imperative language shown in Figure 3. In this language, program
inputs are annotated as high or low, indicating private and public
data respectively. Atomic statements include skip (i.e., a no-op),
assignments of the form x := e , and consume statements, where
“consume(e)”indicates the consumption of e units of resource. Our
language also supports standard control-flow constructs, including
sequential composition, if statements, and loops.

P = λp⃗.S ∀pi ∈ p⃗. Γ(pi) = ai Γ ⊢ S : Γ′, r
RP (a⃗) = r

S = skip
Γ ⊢ S : Γ, 0

S = (x := e) Γ ⊢ e : v Γ′ = Γ[x ← v]
Γ′ ⊢ S : Γ′, 0

S = consume (e) Γ ⊢ e : v
Γ ⊢ S : Γ,v

S = S1; S2
Γ ⊢ S1 : Γ1, r1
Γ1 ⊢ S2 : Γ2, r2

Γ ⊢ S : Γ2, r1 + r2

S = if e then S1 else S2
Γ ⊢ e : true
Γ ⊢ S1 : Γ′, r ′

Γ ⊢ S : Γ′, r ′

S = if e then S1 else S2
Γ ⊢ e : false
Γ ⊢ S2 : Γ′, r ′

Γ ⊢ S : Γ′, r ′

S = while e do S ′ Γ ⊢ e : false
Γ ⊢ S : Γ, r

S = while e do S ′

Γ ⊢ e : true
Γ ⊢ S ′ : Γ1, r1
Γ1 ⊢ S : Γ2, r2

Γ ⊢ S : Γ2, r1 + r2

Figure 4: Rules for computing resource usage

Figure 4 defines the cost-instrumented operational semantics
of this language using judgments of the form Γ ⊢ S : Γ′, r . The
meaning of this judgment is that, assuming we execute S under
environment Γ (mapping variables to values), then S consumes
r units of resource and the new environment is Γ′. As shown in
Figure 4, we use the notation RP (a⃗) to denote the resource usage
of program P on input vector a⃗. In cases where the resource usage
is irrelevant, we simply omit the cost and write Γ ⊢ S : Γ′.

4.2 QCHL Proof Rules
We now turn our attention to the proof rules of Quantitative Carte-
sian Hoare Logic (QCHL), which forms the basis of our verification
methodology. Similar to CHL [65], QCHL is a relational program
logic that allows proving relationships between multiple runs of
the program. However, unlike CHL, QCHL is concerned with prov-
ing properties about the difference in resource usage across multi-
ple runs. Towards this goal, QCHL performs cost instrumentation
and explicitly tracks the program’s resource usage. Furthermore,
since our goal is to prove the specific property of ϵ-bounded non-
interference, QCHL exploits domain-specific assumptions by incor-
porating taint information into the proof rules. Finally, since the
QCHL proof rules we describe here are deterministic, our program

logic can be immediately translated into a verification algorithm
(modulo an oracle for providing loop invariants and proving stan-
dard Hoare triples).

Figure 5 presents the proof rules of QCHL. Here, all proof rules,
with the exception of Rule (0), derive judgments of the form Σ ⊢
⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩, where S1 and S2 contain a disjoint set of variables
and Σ is a taint environment mapping variables to a taint value
drawn from the set {low, high} . The notation S1 ⊛ S2 describes a
program that is semantically equivalent to S1; S2 but that is some-
how easier to verify (because it tries to execute loops from different
executions in lock step). Hence, we have Σ ⊢ ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩ if
{Φ}S1; S2{Ψ} is a valid Hoare triple. As we will see shortly, the taint
environment Σ is used as a way of increasing the precision and
scalability of the analysis. In the remainder of this section, we as-
sume that Σ is sound, i.e., if Σ(x) is low, then the value of x does
not depend (either explicitly or implicitly) on any high inputs. We
now explain each of the rules from Figure 5 in more detail.

The first rule labeled (0) corresponds to the top-level verification
procedure. If we can derive Σ ⊢ SideChannelFree(P , ϵ), then P obeys
the ϵ-bounded non-interference property. In this rule, we use the
notation Sτ to denote the cost-instrumented version of S , defined
as follows:

Definition 3. Given a program P = λp⃗.S , its cost-instrumented
version is another program Pτ obtained by instrumenting P with
a counter variable τ that tracks its resource usage. More formally,
Pτ = γ (P) where the instrumentation procedure γ is defined as:
• γ (λp⃗.S) = λp⃗.(τ := 0;γ (S))
• γ (skip) = skip
• γ (x := e) = (x := e)
• γ (consume (e)) = (τ := τ + e)
• γ (S1; S2) = γ (S1);γ (S2)
• γ (if e then S1 else S2) = if e then γ (S1) else γ (S2)
• γ (while e do S) = while e do γ (S)

Essentially, the program Pτ is the same as P except that it con-
tains an additional variable τ that tracks the program’s resource
usage. As stated by the following lemma, our instrumentation is
correct with respect to the operational semantics from Figure 4.

Lemma 4.1. Let program P = λp⃗.S and let Pτ = λp⃗.Sτ . We have
- Sτ does not contain any consume statement.
- If Γ(p⃗) = a⃗ and Γ ⊢ Sτ : Γ′, then RP (a⃗) = Γ′(τ).

Hence, rule (0) from Figure 5 instruments the original program
λp⃗. S to obtain a new program λp⃗. Sτ that uses a fresh variable τ to
track the program’s resource usage. Since bounded non-interference
is a 2-safety property, it then creates two α-renamed copies Sτ1 and
Sτ2 of Sτ that have no shared variables and uses the remaining
QCHL proof rules to derive a triple

⟨p⃗1
l
= p⃗2

l
∧ p⃗1

h
, p⃗2

h
⟩ Sτ1 ⊛ Sτ2 ⟨Ψ⟩

If the post-condition Ψ logically implies |τ1 − τ2 | ≤ ϵ , we have a
proof that the program obeys bounded non-interference. Intuitively,
this proof rule considers an arbitrary pair of executions of S where
the low inputs are the same and tries to prove that the resource
usage of the two runs differs by at most ϵ .

The remaining rules from Figure 5 derive QCHL triples of the
form ⟨Φ⟩ S1⊛S2 ⟨Ψ⟩. Our verification algorithm applies these rules

λp⃗1.Sτ1 = α (λp⃗.S
τ)

λp⃗2.Sτ2 = α (λp⃗.S
τ)

Φ = (p⃗1
l
= p⃗2

l
∧ p⃗1

h
, p⃗2

h)

Σ ⊢ ⟨Φ⟩ Sτ1 ⊛ Sτ2 ⟨Ψ⟩

|= Ψ → |τ1 − τ2 | ≤ ϵ
(0)

Σ ⊢ SideChannelFree (λp⃗.S, ϵ)

Σ ⊢ ⟨Φ⟩ S2 ⊛ S1 ⟨Ψ⟩ (1)
Σ ⊢ ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩

S , (S1; S2)
Σ ⊢ ⟨Φ⟩ S ; skip⊛ S ′ ⟨Ψ⟩

(2)
Σ ⊢ ⟨Φ⟩ S ⊛ S ′ ⟨Ψ⟩

⊢ {Φ} S1 {Φ′}

Σ ⊢ ⟨Φ′⟩ S2 ⊛ S3 ⟨Ψ⟩

S1 = skip ∨ S1 = (v := e)
(3)

Σ ⊢ ⟨Φ⟩ S1; S2 ⊛ S3⟨Ψ⟩

⊢ {Φ} S {Ψ}
(4)

Σ ⊢ ⟨Φ⟩ S ⊛ skip ⟨Ψ⟩

Σ ⊢ ⟨Φ ∧ e⟩ S1; S ⊛ S3⟨Ψ1⟩

Σ ⊢ ⟨Φ ∧ ¬e⟩ S2; S ⊛ S3⟨Ψ2⟩ (5)
Σ ⊢ ⟨Φ⟩ if e then S1 else S2; S ⊛ S3⟨Ψ1 ∨ Ψ2⟩

⊢ {Φ}while e1 do S1{Φ′}

⊢ {Φ′}while e2 do S2{Ψ′}

Σ ⊢ ⟨Ψ′⟩ S ⊛ S ′ ⟨Ψ⟩
(6)

Σ ⊢ ⟨Φ⟩ while e1 do S1; S ⊛while e2 do S2; S ′⟨Ψ⟩

Σ ⊢ CanSynchronize(e1, e2, S1, S2, I)
Σ ⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I ′⟩

Σ ⊢ ⟨I ∧ ¬e1 ∧ ¬e2⟩S ⊛ S ′⟨Ψ⟩

|= Φ→ I |= I ′ → I
(7)

Σ ⊢ ⟨Φ⟩ while e1 do S1; S ⊛while e2 do S2; S ′⟨Ψ⟩

Figure 5: QCHL proof rules. The notation α (S) denotes an
α-renamed version of statement S .

in the reverse order shown in Figure 5. That is, we only use rule
labeled i if no rule with label j > i is applicable. Hence, unlike stan-
dard CHL, our verification method does not perform backtracking
search over the proof rules.

Let us now consider the remaining rules in more detail: Rule
(1) is the same as commutativity rule in CHL and states that the
⊛ operator is symmetric. Intuitively, since S1 and S2 do not share
variables, any interleaving of S1 and S2 will yield the same result,
and we can therefore commute the two operands when deriving
QCHL triples. As will become clear shortly, the commutativity rule
ensures that our verification algorithm makes progress when none
of the other rules are applicable.

The next rule states that we are free to append a skip statement to
any non-sequential statement without affecting its meaning. While

this rule may not seem very useful on its own, it allows us to avoid
redundancies in the proof system by bringing each S1 ⊛ S2 to a
canonical form where S1 is always of the form S ; S ′ or S2 is skip.

Rule (3) specifies the verification logic for S1 ⊛ S2 when S1 is
of the form A; S where A is an atomic statement. In this case, we
simply “consume"A by deriving the Hoare triple {Φ}A{Φ′} and then
use Φ′ as a precondition for S ⊛ S2.

Rule (4) serves as the base case for our logic. When we want to
prove ⟨Φ⟩ S ⊛ skip ⟨Ψ⟩, we immediately reduce this judgement to
the standard Hoare triple {Φ} S {Ψ} because skip is just a no-op.
Example. Suppose we want to prove (0-bounded) non-interference
for the following program:
λ(low x). consume(x); skip;

First we apply transformation γ and get the resource instru-
mented program:
λ(low x). τ =0; τ = τ + x; skip;

Ignore the taint environment for now, as we will not use it in
this example. According to rule (0), we only need to prove

⟨x1 = x2⟩ τ1 = 0;τ1 = τ1 + x1; skip; ⊛
τ2 = 0;τ2 = τ2 + x2; skip; ⟨τ1 = τ2⟩

Applying rule (3) twice, we can reduce the above judgement to the
following one:

⟨x1 = x2 ∧ τ1 = x1⟩ skip; ⊛ τ2 = 0;τ2 = τ2 + x2; skip; ⟨τ1 = τ2⟩

Swapping the two operands of ⊛ with rule (1), we get

⟨x1 = x2 ∧ τ1 = x1⟩ τ2 = 0;τ2 = τ2 + x2; skip; ⊛ skip; ⟨τ1 = τ2⟩

After applying rule (4), we get

{x1 = x2 ∧ τ1 = x1} τ2 = 0;τ2 = τ2 + x2; skip; {τ1 = τ2}

Applying Hoare-style strongest postcondition computation, the
above Hoare triple can be reduced to

{x1 = x2 ∧ τ1 = x1 ∧ τ2 = x2} skip; {τ1 = τ2}

Since this Hoare triple is clearly valid, we have proven non-interference
using the QCHL proof rules. □

Rule (5) specifies the general verification logic for branch state-
ments. This rule is an analog of the conditional rule in standard
Hoare logic: we can verify an if statement by embedding the branch
condition e into the true branch and its negation ¬e into the false
branch and carry out the proof for both branches accordingly.

Rule (6) specifies the general verification logic for loops. Without
loss of generality, this rule requires both sides of the ⊛ operator
to be loops: If one side is a not a loop, we can always apply one
of the other rules, using rule (1) to swap the loop to the other side
if necessary. The idea here is to apply self-composition [14]: we
run the loop on the left-hand side first, followed by the loop on the
right-hand side, and try to derive the proof as if the two loops are
sequentially composed.

While rule (6) is sound, it is typically difficult to prove 2-safety
using rule (6) alone. In particular, rule (6) does not allow us to syn-
chronize executions between the two loops, so the resulting Hoare
triples are often hard to verify. The following example illustrates
this issue:
Example. Consider the following code snippet:

e1 = α (e) e2 = α (e)
e1 ≡α e2

S1 = α (S) S2 = α (S)

S1 ≡α S2

e1 ≡α e2
S1 ≡α S2

Σ ⊢ e1 : low
Σ ⊢ e2 : low

Σ ⊢ CanSynchronize(e1, e2, S1, S2, I)

|= I → (e1 ↔ e2)

Σ ⊢ CanSynchronize(e1, e2, S1, S2, I)

Figure 6: Helper rules for figure 5

λ(low n, low k).

i = 0;

while (i < n) {

consume(i); i = i + k;

}

To prove that this program obeys ϵ-bounded non-interference,
we need to show that the difference in resource consumption after
executing the two copies of the loop is at most ϵ . However, to
prove this property using rule (6), we would need to infer a precise
post-condition about resource consumption. Unfortunately, this
requires inferring a complex non-linear loop invariant involving
i,n,k . Since such loop invariants are difficult to infer, we cannot
prove non-interference using rule (6). □

Rule (7) is one of the most important rules underlying QCHL, as
it allows us to execute loops from different executions in lockstep.
This loop can be applied only when the CanSynchronize predicate
is true, meaning that the two loops are guaranteed to execute the
same number of times. The definition of the CanSynchronize pred-
icate is shown in Figure 6: Given two loops L1 ≡ while (e1) do S1
and L2 ≡ while (e2) do S2, and a loop invariant I for the “fused"
loopwhile (e1 ∧ e2) do S1; S2, CanSynchronize determines if L1 and
L2 must execute the same number of times. In the easy case, this
information can be determined using only taint information: Specif-
ically, suppose that L1,L2 are identical modulo variable renaming
and e1, e2 contains only untainted (low) variables. Since we prove
bounded non-interference under the assumption that low variables
from the two runs have the same value, this assumption implies
L1 and L2 must execute the same number of times. If we cannot
prove the CanSynchronize predicate using taint information alone,
we may still be able to prove it using the invariant I for the fused
loop. Specifically, if I logically implies e1 ↔ e2, we know that after
each iteration e1, e2 have the same truth value; hence, the loops
must again execute the same number of times.

Now, suppose we can prove that CanSynchronize evaluates to
true. In this case, rule (7) conceptually executes the two loops in lock-
step. Specifically, the premise Σ ⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I ′⟩, together
with |= I ′ → I , ensures that I is an inductive invariant of the fused
loop while(e1∧e2) do S1; S2. Thus, I must hold when the both loops
terminate. Thus, we can safely use the predicate I ∧ ¬e1 ∧ ¬e2 as a
precondition when reasoning about the “continuations" S and S ′.

Algorithm 1 Relational Invariant Generation
Input: Σ, the taint environment.
Input: Φ, the pre-condition of the loop.
Input: e, S , loop condition and loop body.
Input: V , the set of all variables appeared in the loop.
Output: An inductive relational loop invariant
1: function RelationalInvGen(Σ,Φ, e, S,V)
2: (e1, S1) ← α (e, S)
3: (e2, S2) ← α (e, S)
4: Guesses← {v1 = v2 | v ∈ V }
5: for д ∈ Guesses do
6: if ̸ |= Φ→ д then
7: Guesses← Guesses\{д}
8: inductive← false
9: while ¬ inductive do
10: I ←

∧
д∈Guesses д

11: assume Σ ⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I ′⟩
12: inductive← true
13: for д ∈ Guesses do
14: if ̸ |= I ′ → д then
15: Guesses← Guesses\{д}
16: inductive← false
17: return

∧
д∈Guesses д

Example. In the previous example, we illustrated that it is difficult
to prove non-interference using rule (6) even for a relatively simple
example. Let us now see why rule (7) makes verifying 2-safety easier.
Since i and n are both low according to the taint environment Σ,
we can show that the the CanSynchronize predicate evaluates to
true. To prove that the program obeys non-interference, we use
the relational loop invariant I = (i1 = i2 ∧ τ1 = τ2 ∧ k1 = k2). It is
easy to see that I is a suitable inductive relational loop invariant,
because:
• i1, i2,τ1,τ2 are all set to 0 before the loop starts.
• We know k1 = k2 from the precondition (since they are low
inputs)
• i1 and i2 are increased by the same amount in each iteration
of the loop since k1 = k2.
• τ1 and τ2 are also increased by the same amount in each
iteration of the loop since i1 = i2.
• I implies the post condition |τ1 − τ2 | ≤ 0.

Observe that the use of rule (7) allows us to prove the desired prop-
erty without reasoning about the total resource consumption of the
loop. Hence, we do not need complicated non-linear loop invariants,
and the verification task becomes much easier to automate. □

Theorem 4.2 (Soundness). Assuming soundness of taint envi-
ronment Σ, if Σ ⊢ SideChannelFree (λp⃗.S, ϵ), then the program λp⃗.S
does not have an ϵ-bounded resource side-channel.

Proof of this theorem can be found in appendix A.

4.3 Loop Invariant Generation
In the previous subsection, we assumed the existence of an oracle
for finding suitable relational loop invariants (recall rule 7). Here,

Secret
data

Java
Bytecode

Taint
Tracking

Points-To
Analysis

QCHL
Verifier

Callgraph

Callgraph

Hotspot

Resource
consumption

instrumentation

Figure 7: Workflow of the Themis tool

by “relational loop invariant", we mean a simulation relation over
variables in programs S1, S2. Specifically, we use such relational
loop invariants in two ways: First, we use them to check whether
two loops execute the same number of times. Second, we use the
relational loop invariant to compute the precondition for the con-
tinuations of the two programs. Hence, to apply rule 7, we need an
algorithm for computing such relational loop invariants.

Algorithm 1 shows our inference engine for computing relational
loop invariants. This algorithm can be viewed as an instance of
monomial predicate abstraction (i.e., guess-and-check) [27, 47, 61].
Specifically, we consider the universe Guesses of predicates v1 = v2
relating variables from the two loops. Because synchronizable loops
execute the same number of times, they typically contain one or
more “anchor” variables that are pairwise equal. Thus, we can often
find useful relational invariants over this universe of predicates.

Considering Algorithm 1 in more detail, we first filter our those
predicates that are not implied by the precondition Φ (lines 5-7). In
lines 9-16, we then further filter out those predicates that are not
preserved in the loop body. In particular, on line 10, we construct
the candidate invariant by conjoining all remaining predicates in
our guess set, and, on line 11, we compute the post condition I ′

of the loop using the proof rules shown in figure 5. Since we have
Σ ⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I ′⟩ and ̸ |= I ′ → д, this means predicate д is
not preserved by the loop body and is therefore removed from our
set of predicates. When the loop in lines 9-16 terminates, we have
Σ ⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I ′⟩ and |= I ′ → I ; thus, I is an inductive
relational loop invariant.

5 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we discuss the design and implementation of Themis,
our end-to-end static analysis tool for verifying bounded non-
interference. While the QCHL verifier discussed in the previous
section is one of the key components of Themis, it is not necessary
(and also not scalable) to employ such precise relational reasoning
throughout the entire program. Hence, as mentioned earlier, our
approach employs taint analysis to identify program parts that
require more precise analysis.

5.1 Design Overview
Figure 7 gives a high-level schematic overview of Themis’s ar-
chitecture. In addition to the QCHL verifier discussed in detail in
Section 4, Themis also incorporates pointer and taint analyses and
instruments the program to explicitly track resource usage. We now
give a brief overview of each of these components.

Pointer analysis. Given the bytecode of a Java application,Themis
performs (field- and object-sensitive) pointer analysis to build a
precise call graph and identify all variables that may alias each
other. The resulting call graph and alias information are used by
the subsequent taint analysis as well as the QCHL verifier.

Taint analysis. The use of taint analysis in Themis serves two
goals: First, the QCHL verifier uses the results of the taint analysis
to determine whether two loops can be synchronized. Second, we
use taint analysis to identify hotspots that need to be analyzed more
precisely using the QCHL verifier.

The taint analyzer uses the annotations in Themis’s configura-
tion file to determine taint sources (i.e., high inputs) and propagates
taint using a field- and object-sensitive analysis. Our taint analyzer
tracks both explicit and implicit flows. That is, a variable v is con-
sidered tainted if (a) there is an assignment v := e such that e is
tainted (explicit flow), or (b) a write to v occurs inside a branch
whose predicate is tainted (implicit flow).

We use the results of the taint analysis to identify methods that
should be analyzed by the QCHL verifier. A methodm is referred
to as hot spot if it reads from a tainted variable. We say that a hot
spotm dominates another hot spotm′ ifm′ is a transitive callee
of m but not the other way around. Any hot spot that does not
have dominators is given as an entry point to the QCHL verifier. In
principle, this strategy of running the QCHL verifier on only hot
spots can cause our analysis to report false positives. For instance,
consider the following example:

main(...) { foo(); bar(); }

foo() {
int x = readSecret();
if(x > 0) consume(1); else consume(100);

}

bar() {
int y = readSecret();
if(y <= 0) consume(1); else consume(100);

}

While this program does not have any secret-dependent imbal-
ance in resource usage, foo and bar individually do not obey non-
interference, causing our analysis to report false positives. However,
in practice, we have not observed any such false positives, and this
strategy greatly increases the scalability of the tool.

Resource usage instrumentation. The language we considered
for our formalization in Section 4 is equipped with a consume(x)
statement that models consumption of x units of resource. Unfortu-
nately, since Java programs do not come with such statements, our
implementation uses a cost model to instrument the program with
such consume statements. In principle, our framework can detect

different classes of side channels, provided that the tool is given a
suitable cost model for the corresponding resource type.

Our current implementation provides cost models for two kinds
of resource usage, namely, timing and response size. For timing,
we use a coarse cost model where every byte code instruction is
assumed to have unit cost. For response size, each string s that is
appended to the response consumes s .lenдth() units of resource.

Counterexample generation. If Themis fails to verify the bounded
non-interference property for a given ϵ , it can also generate coun-
terexamples by using the models provided by the underlying SMT
solver. In particular, when the verification condition (VC) generated
by Themis is invalid, the tool asks the SMT solver for a falsifying
assignment and pretty-prints the model returned from Z3 by replac-
ing Z3 symbols with their corresponding variable names. Since the
VCs depend on automatically inferred loop invariants, the coun-
terexamples generated by Themis may be spurious if the inference
engine does not infer sufficiently strong loop invariants.

5.2 System Implementation
The Themis system is implemented in a combination of Java and
OCaml and leverages multiple existing tools, such as Soot [67],
Z3 [24], and Apron [44]. Specifically, our pointer analysis builds
on top of Soot [67], and we extend the taint analysis provided by
FlowDroid [9], which is a state-of-the-art context-, field-, flow-,
and object-sensitive taint analyzer, to also track implicit flows. Our
QCHL verifier is implemented in OCaml and uses the Z3 SMT
solver [24] to discharge the generated verification conditions. To
prove the Hoare triples that arise as premises in the QCHL proof
rules, we perform standard weakest precondition computation,
leveraging the Apron numerical abstract domain library [44] to
infer standard loop invariants. Recall that we infer relational loop
invariants using the monomial predicate abstraction technique
described in Section 4.3.

Our formal description of QCHL in section 4 uses a simplified
programming language that does not have many of the complexities
of Java. Themis handles these complexities by first leveraging the
Soot framework to parse the Java bytecode to Soot IR, and then
using an in-house “front-end” that further lowers Soot IR into a
form closer to what is presented in section 4. In particular, the
transformation from Soot to our IR recovers program structures
(loops, conditionals etc.) and encodes heap accesses in terms of
arrays. The verifier performs strongest postcondition calculation
over our internal IR and encodes verification conditions with SMT
formulae. In the remainder of this section, we explain how we
handle various challenges that we encountered while building the
Themis frontend.

Object encoding. Since objects are pervasive in Java applications,
their encoding has a significant impact on the precision and scala-
bility of the approach. In Themis, we adopt a heap encoding that
is similar to ESC-Java [28]. Specifically, instance fields of objects
are represented as maps from object references (modeled as inte-
ger variables) to the value of the corresponding field. Reads and
writes to the map are modeled using select and update functions
defined by the theory of arrays in SMT solvers. If two object refer-
ences are known not to be the same (according to the results of the

pointer analysis), we then add a disequality constraint between the
corresponding variables.

Method invocation. Since the simplified language from Section 4
did not allow function calls, we only described an intraprocedural
version of the QCHL verifier. We currently perform interprocedural
analysis by function inlining, which is performed as a preprocess-
ing step at the internal IR level before the analysis takes place.
Since the QCHL verifier only needs to analyze hot spots (which
typically constitute a small fraction of the program), we do not
find inlining to be a major scalability bottleneck. However, since
recursive procedures cannot be handled using function inlining, our
current implementation requires models for recursive procedures
that correspond to hot spots.

Virtual calls and instanceof encoding. The result of certain opera-
tions in the Java language, such as virtual calls and the instanceof
operator, depends on the runtime values of their operands. To
faithfully model those operations , we encode the type of each al-
location site as one of its field, and we transform virtual calls and
instanceof to a series of if statements that branch on this field. For
example, if variable a may point to either allocation A1 of type T1
or allocation A2 of type T2, then the polymorphic call site a.foo()
will be modeled as:

if (a.type == T1)

((T1)a).foo();

else if (a.type == T2)

((T2)a).foo();

We handle the instanceof operator in a similar way.

6 EVALUATION
In this section, we describe our evaluation of Themis on a set of
security-critical Java applications. Our evaluation is designed to
answer the following research questions:
Q1. How does Themis compare with state-of-the-art tools for

side channel detection in terms of accuracy and scalability?
Q2. Is Themis able to detect known vulnerabilities in real-world

Java applications, and can Themis verify their repaired ver-
sions?

Q3. Is Themis useful for detecting zero-day vulnerabilities from
the real world?

In what follows, we describe a series of experiments that are
designed to answer the above questions. All experiments are con-
ducted on an Intel Xeon(R) computer with an E5-1620 v3 CPU and
64G of memory running on Ubuntu 16.04.

6.1 Comparison Against Blazer
To evaluate how competitive Themis is with existing tools, we
compare Themis against Blazer [8], a state-of-the-art tool for de-
tecting timing side channels in Java bytecode. Blazer is a static
analyzer that uses a novel decomposition technique for proving
non-interference properties. Since the Blazer tool is not publicly
available, we compare Themis against Blazer on the same 22 bench-
marks that are used to evaluate Blazer in their PLDI’17 paper [8].
These benchmarks include a combination of challenge problems
from the DARPA STAC program, classic examples from previous
literature[33, 46, 55], and some microbenchmarks constructed by

Benchmark Version Size Time (s)
Blazer Themis

MicroBench
array Safe 16 1.60 0.28
array Unsafe 14 0.16 0.23
loopAndbranch Safe 15 0.23 0.33
loopAndbranch Unsafe 15 0.65 0.16
nosecret Safe 7 0.35 0.20
notaint Unsafe 9 0.28 0.12
sanity Safe 10 0.63 0.41
sanity Unsafe 9 0.30 0.17
straightline Safe 7 0.21 0.49
straightline Unsafe 7 22.20 5.30
STAC
modPow1 Safe 18 1.47 0.61
modPow1 Unsafe 58 218.54 14.16
modPow2 Safe 20 1.62 0.75
modPow2 Unsafe 106 7813.68 141.36
passwordEq Safe 16 2.70 1.10
passwordEq Unsafe 15 1.30 0.39
Literature
k96 Safe 17 0.70 0.61
k96 Unsafe 15 1.29 0.54
gpt14 Safe 15 1.43 0.46
gpt14 Unsafe 26 219.30 1.25
login Safe 16 1.77 0.54
login Unsafe 11 1.79 0.70

Figure 8: Comparison between Themis and Blazer.

the developers of Blazer. Since Blazer verifies standard non-
interference (rather than our proposed ϵ-bounded variant), we set
the value of ϵ to be 0 when running Themis.

We summarize the results of our comparison against Blazer
in Table 8. 3 One of the key points here is that Themis is able
to automatically verify all 25 programs from the Blazer data set.
Moreover, we see that Themis is consistently faster than Blazer
except for a few benchmarks that take a very short time to analyze.
On average, Themis takes a median of 7.73 seconds to verify a
benchmark, whereas the median running time of Blazer is 376.92
seconds.

6.2 Detection of Known Vulnerabilities
To demonstrate that Themis can be used to detect non-trivial vulner-
abilities in real-world Java programs, we further evaluate Themis
on security-sensitive Java frameworks. The benchmarks we collect
come from the following sources:

(1) Response-size side-channel benchmarks from existing
publication [73]4.

3 The Blazer paper reports two sets of numbers for running time, namely time for
safety verification alone, and time including attack specification search. Since Themis
does not perform the latter, we only compare time for safety verification. For the
“Size” column in the table, we use the original metric from Blazer, which indicates
the number of basic blocks.
4We are only able to obtain the source codes for 2 of 3 benchmarks mentioned in the
paper.

Benchmark Version LOC LOC’ ϵ = 64 ϵ = 0 Time (s)
Spring-Security Safe 1630 41 ! ! 1.70
Spring-Security Unsafe 1602 32 ! ! 1.09
JDK7-MsgDigest Safe 633 30 ! ! 1.27
JDK6-MsgDigest Unsafe 619 27 ! ! 1.33
Picketbox Safe 208 73 ! ✗ 1.79
Picketbox Unsafe 180 65 ! ! 1.55
Tomcat Safe 12221 100 ! ✗ 9.93
Tomcat Unsafe 12173 96 ! ! 8.64
Jetty Safe 2667 77 ! ! 2.50
Jetty Unsafe 2619 76 ! ! 2.07
orientdb Safe 19564 134 ! ✗ 37.99
orientdb Unsafe 19413 131 ! ! 38.09
pac4j Safe 1978 104 ! ✗ 3.97
pac4j Unsafe 1900 105 ! ! 1.85
boot-auth Safe 7106 74 ! ✗ 9.12
boot-auth Unsafe 6977 69 ! ! 8.31
tourPlanner Safe 7735 46 ! ! 22.22
tourPlanner Unsafe 7660 34 ! ! 22.01
Dyna_table Unsafe 175 40 ! ! 1.165
Advanced_table Unsafe 232 55 ! ! 2.01

Figure 9: Evaluation on existing vulnerabilities. A check-
mark (!) indicates that Themis gives the correct result,
while ✗ indicates a false positive.

(2) One benchmark that contains a response-size side channel
from the DARPA STAC project.

(3) A well-known timing side channel in the MessageDigest
class from JDK6.

(4) Seven other benchmarks with known vulnerabilities col-
lected from Github.

Benchmarks that fall in the first two categories contain response-
size side-channel vulnerabilities, and all other benchmarks contain
timing side-channels. All benchmarks except for those in category
(1) also come with a repaired version that does not exhibit the
original vulnerability.

Before running Themis, we need to specify the entry points of
each application. Since most applications come with test cases, we
use these test harnesses as entry points. For those applications for
which we do not have suitable drivers, we manually construct a
harness and specify it as the entry point.

Main results.The table in Figure 9 shows the accuracy and running
time of Themis on these benchmarks. Using a value of ϵ = 64,
Themis successfully finds vulnerabilities in the original vulnerable
versions of these frameworks and is able to verify that the original
vulnerability is no longer present in the repaired versions. The
running time of Themis is also quite reasonable, taking an average
8.81 seconds to analyze each benchmark.

Benefit of taint analysis. Recall from Sections 1 and 5 that Themis
performs taint analysis to identify hot spots, which overapproxi-
mate program fragments that may contain a side-channel vulnera-
bility. The QCHL verifier only analyzes such hot spots rather than
the entire program. To demonstrate the usefulness of taint analysis,
we compare the lines of code (in Soot IR) in the original application

Benchmark LOC Category #Reports Time (s)
Jetty 2619 Server 4 10.17
Tomcat 12173 Server 1 5.86
OpenMRS 10721 Healthcare 1 9.71
OACC 78 Authentication 1 1.83
Apache Shiro 4043 Authentication 0 6.54
Apache Crypto 4505 Crypto 0 4.33
bc-java 5759 Crypto 0 6.89

Figure 10: Evaluation Themis on identifying zero-day vulner-
abilities from popular Java applications

(reported in the LOC column) with the lines of code (also in Soot
IR) with those analyzed by the QCHL verifier (reported in the LOC’
column). As we can see from Figure 9, taint analysis significantly
prunes security-irrelevant parts of the application in terms of lines
of codes. This pruning effect can also be observed using other statis-
tics. For example, the number of reachable methods ranges from 15
to 1487, with an average of 479, before taint analysius, whereas the
number of reachable methods after taint analysis ranges from 6 to
35, with an average of 15, after taint analysis. Thus, pruning using
taint information makes the job of the QCHL verifier significantly
easier.

Benefit of ϵ . To justify the need for our relaxed notion of non-
interference, Figure 9 also shows the results of the same experi-
ment using an ϵ value of 0. Hence, the ϵ = 0 column from Figure 9
corresponds to the standard notion of non-interference. As we can
see from the table, Themis reports several false positives using an
ϵ value of 0. In particular, the repaired versions of some programs
still exhibit a minor resource usage imbalance but this difference is
practically infeasible to exploit, so the developers consider these ver-
sions to be side-channel-free. However, these programs are deemed
unsafe using standard non-interference. We believe this compari-
son shows that our relaxed policy of ϵ-bounded non-interference
is useful in practice and allows security analysts to understand the
severity of the side channel.

Benefit of relational analysis. To investigate the benefit of rela-
tional invariants, we analyze the safe versions of the 20 benchmarks
from Figures 8 and 9 with relational invariant generation disabled.
In this case, Themis can only verify the safety of 10 of the bench-
marks.

Although this number can potentially be increased by using a
more sophisticated non-relational loop invariant generation algo-
rithm,Themis circumvents this need, instead using simple relational
in- variants that are conjunctions of simple equality constraints.
This experiment corroborates the hypothesis that QCHL makes
verification easier by requiring simpler loop invariants compared
to other techniques like self-composition.

6.3 Discovery of Zero-Day Vulnerabilities
To evaluate whether Themis can discover unknown vulnerabili-
ties in real world Java applications, we conduct an experiment on
seven popular Java frameworks. Our data set covers a wide range
of Java applications from different domains such as HTTP servers,

1 public boolean check(Object credentials)

2 {

3 if (credentials instanceof char [])
4 credentials = new String ((char []) credentials);
5 if (!(credentials instanceof String) && !(credentials

instanceof Password))

6 LOG.warn("Can't check " + credentials.getClass () + "

against CRYPT");

7
8 String passwd = credentials.toString ();

9 // FIX: return stringEquals(_cooked , UnixCrypt.crypt(

passwd ,_cooked));

10 return _cooked.equals(UnixCrypt.crypt(passwd ,_cooked));

11
12 }

13
14 /**

15 * <p>Utility method that replaces String.equals () to

avoid timing attacks.</p>

16 */

17 static boolean stringEquals(String s1, String s2)

18 {

19 boolean result = true;
20 int l1 = s1.length ();

21 int l2 = s2.length ();

22 if(l1 != l2) result = false;
23 int n = (l1 < l2) ? l1 : l2;

24 for (int i = 0; i < n; i++)

25 result &= s1.charAt(i) == s2.charAt(i);

26 return result;

27 }

Figure 11: Eclipse Jetty code snippet that contains a timing
side channel. Line 10 is the original buggy code. This vul-
nerability can be fixed by implementing stringEquals (lines
14 – 26) and calling it instead of the built-in String.equals
method.

health care platforms, authentication frameworks, etc. For exam-
ple, Eclipse Jetty is a well-known web server that is embedded
in products such as Apache Spark, Google App Engine, and Twit-
ter’s Streaming API. OpenMRS is the world’s leading open source
enterprise electronic medical record system platform; OACC is a
well-known Java application security framework, and bc-java is an
implementation of the Bounty Castle crypto API in Java.

As in our previous experiment, we first manually annotate each
application to indicate the sources of confidential information. We
then use Themis to find timing side channels in these applications
using an ϵ value of 10. The results of this experiment are summa-
rized in Figure 10. As we can see from this figure, Themis reports a
total of seven vulnerabilities in four of the analyzed applications.
We manually inspected each report and confirmed that the detected
vulnerabilities are indeed true positives. We also reported the vul-
nerabilities detected by Themis to the developers, and the majority
of these vulnerabilities were confirmed and fixed by the developers
in less than 24 hours. However, the vulnerability that we reported
for OpenMRS was rejected by the developers. The reason for this
false positive is that the leaked password is actually hashed and
salted in the database, but, because the logic for hashing and salting
is not part of the Java implementation, Themis was not able to
reason about this aspect.

To give the reader some intuition about the kinds of side chan-
nels detected by Themis, Figure 11 shows a security vulnerability

from the Eclipse Jetty web server. The check procedure from Fig-
ure 11 checks whether the password provided by the user matches
the expected password (_cooked). The original code performs this
check by calling the built-in equality method provided by the
java.lang.String library. Since the built-in equality method re-
turns false as soon as it finds a mismatch between two characters,
line 10 in the check method introduces a timing side-channel vul-
nerability.

The developers have fixed the vulnerability [1] in this code snip-
pet by replacing line 10 with the (commented out) code shown
in line 9. In particular, the fix involves calling the safe version of
equals, called stringEquals, which checks for equality between all
characters in the strings. This repaired version of the checkmethod
no longer contains a vulnerability for any ϵ > 1, and Themis can
verify that the check procedure is now safe.

7 LIMITATIONS
Like any other program analysis tool, Themis has a number of
limitations. First, due to the fundamental undecidability of the un-
derlying static analysis problem, Themis is incomplete and may
report false positives (e.g., due to imprecision in pointer analysis or
loop invariant generation). For example, ourmethod for inferring re-
lational invariants is based onmonomial predicate abstraction using
a fixed set of pre-defined templates, and we restrict our templates
to equalities between variables. In addition, our non-relational in-
variant generator is based on traditional abstract interpretation,
which does not distinguish array elements precisely.

Second, dynamic features of the Java language, such as reflective
calls, dynamic class loading, and exceptional handling, pose chal-
lenges for Themis. Our current implementation can handle some
cases of reflection (e.g., reflective calls with string constants), but
reflection can, in general, cause Themis to have false negatives. We
plan to mitigate this issue by integrating the Tamiflex tool [16] for
reasoning about reflection into the Themis tool chain.

Finally, Themis unconditionally trusts all human inputs into the
system, which may result in false negatives if the user inputs are
not accurate. Said user inputs include application entry points, taint
sources, cost instrumentations, and models of library methods.

8 RELATEDWORK
In this section, we survey related work from the security and pro-
gram analysis communities and explain how Themis differs from
prior techniques.

Side channel attacks. Side-channel attacks related to resource
usage have been known for decades. Specifically, side channels
have been used to leak private cryptographic keys [3, 19, 46], infer
user accounts [17], steal cellphone and credit card numbers [32],
obtain web browsing history [26], and recover the plaintext of
encrypted TLS traffic [5]. Chen et al. presents a comprehensive
study of side-channel leaks in web applications [22].

Verification for non-interference. As mentioned in Section 3, we
can prove that a program is free of side channel leaks by proving that
it obeys a certain kind of non-interference property. There has been
a significant body of work on proving non-interference. The sim-
plest and most well-known technique for proving non-interference

(and, in general, any 2-safety property) is self-composition [14]. The
general idea underlying self-composition is as follows: Given a pro-
gram P and 2-safety property ϕ, we create a new program P ′ which
sequentially composes two α-renamed copies of P and then asserts
that ϕ holds. Effectively, self-composition reduces verification of
2-safety to standard safety. While this self-composition technique
is sound and relatively complete, successfully verifying the new
program often requires the safety checker to come up with intricate
invariants that are difficult to infer automatically [66]. Dufay et al.
try to solve this problem by providing those invariants through
JML annotations [25]; however, the resulting approach requires
significant manual effort on the part of the developer or security
analyst.

Another popular approach for proving k-safety is to construct so-
called product programs [12, 13, 71]. Similar to self-composition, the
product program method also reduces k-safety to standard safety
by constructing a new program containing an assertion. While
there are several different methods for constructing the product
program, the central idea –shared in this work– is to execute the
different copies of the program in lock step whenever possible. One
disadvantage of this approach is that it can cause a blow-up in
program size. As shown in the work of Sousa and Dillig [65], the
product program approach can therefore suffer from scalability
problems.

The approach advocated in this paper is most closely related
to relational program logic, such as Cartesian Hoare Logic [65]
and Relational Hoare Logic [15]. Specifically, the QCHL program
logic introduced in Section 4 builds on top of CHL by instantiating
it in the ϵ-bounded non-interference setting and augmenting it
with additional rules for tracking resource usage and utilizing taint
information. One advantage of this approach over explicit product
construction is that we decompose the proof into smaller lemmas
by constructing small product programs on-the-fly rather than
constructing a monolithic program that is subsequently checked
by an off-the-shelf verifier.

The approach described in this paper also shares similarities
with the work of Terauchi and Aiken, in which they extend self-
composition with type-directed translation [52, 66]. In particular,
this technique uses a type system for secure information flow to
guide product construction. Specifically, similar to our use of taint
information to determine when two loops can be synchronized, Ter-
auchi and Aiken use type information to construct a better product
program than standard self-composition. Our verification technique
differs from this approach in two major ways: First, our algorithm
is not guided purely by taint information and uses other forms
of semantic information (e.g., relational loop invariants) to deter-
mine when two loops can be executed in lock step. Second, similar
to other approaches for product construction, the type-directed
translation method generates a new program that is subsequently
verified by an off-the-shelf verifier. In contrast, our method decom-
poses the proof into smaller lemmas by constructing mini-products
on-the-fly, as needed.

Almeida et al. implement a tool named ct-verif based on afore-
mentioned techniques (involving both product programs and self-
composition) [6]. In particular, ct-verif is designed for verifying the
constant-time policy, which roughly corresponds to our notion of
0-bounded non-interference instantiated with a timing cost model.

In addition to using different techniques based on QCHL and taint
analysis, Themis provides support for verifying a more general
property, namely ϵ-bounded non-interference for any value of ϵ .

An alternative approach for verifying k-safety is the decompo-
sition method used in Blazer [8]: This method decomposes exe-
cution traces into different partitions using taint information and
then verifies k-safety of the whole program by proving a standard
safety property of each partition. One possible disadvantage of
this approach is that, unlike our method and product construction
techniques, Blazer does not directly reason about the relation-
ship between a pair of program executions. As illustrated through
some of the examples in Section 4, such relational reasoning can
greatly simplify the verification task in many cases. Furthermore,
as we demonstrate in Section 6, Themis can verify benchmarks that
cannot be proven by Blazer within a 10-minute time limit.

In their recent work, Ngo et al. propose a language-based system
for verifying and synthesizing synthesizes programs with constant-
resource usage, meaning that every execution path of the program
consumes the same amount of resource [53]. This technique uses
a novel type system to reason both locally and globally about the
resource usage bounds of a given program. Similar to work for
verifying constant-time policy, this technique also does not allow
proving ϵ-bounded non-interference for arbitrary values of ϵ . Fur-
thermore, as a type-based solution for a functional language, this
technique puts heavier annotation burden on the developer and is
not immediately applicable to standard imperative languages like
Java or C.

Secure information flow. There has been a significant body of
work on language-based solutions for enforcing information flow
properties [51, 56, 69, 72]. For instance, Zhang et al. [72] propose
a language-based approach that tracks side-channel leakage, and
Pottier et al. [56] design a type-based information flow analysis
inside an ML-style language. Themis differs from these language-
based solutions in that it requires minimal annotation effort and
works on existing Java programs.

One of the most popular tools for tracking information flow in ex-
isting Java applications is FlowDroid [9], and Themis builds on top
of FlowDroid to identify secret-tainted variables. FlowTracker [59]
is another information flow analysis for C/C++ featuring efficient
representation of implicit flow. We believe these techniques are
complimentary to our approach, and a tool like Themis can directly
benefit from advances in such static taint tracking tools.

There have also been attempts at verifying the constant-time
policy directly using information-flow checking [11]. However, this
approach is flow-insensitive (and therefore imprecise) and imposes
a number of restrictions on the input program.

Automatic resource bound computation. There has been a flurry
of research on statically computing upper bounds for the resource
usage of imperative programs. Existing techniques for this purpose
leverage abstract interpretation [37], size-change abstraction [74],
lossy vector addition systems [63], linear programming [20], dif-
ference constraints [64], recurrence relations [4, 7, 29], and term
rewriting [18]. Another line of research, called AARA [39–43], per-
forms bound analysis on functional languages.

Our approach differs from these approaches in that we perform
relational reasoning about resource usage. That is, rather than

computing an upper bound on the resource usage of the program,
we use QCHL to prove an upper bound on the difference between the
resource usage of two program runs. Similar to our QCHL, recent
work by Çiçek et al. performs relational cost analysis to reason
about the difference in resource usage of a pair of programs [21].
Their work shares with us the insight that relational analysis may
be simplified by exploiting the structural similarity between the
inputs as well as the program codes. However, their non-relational
reasoning relies on range analysis while Themis relies on Hoare-
style weakest precondition computation; as a result Themis is more
precise. Also, Themis analyzes real-world Java programs, while [21]
is built on top of a hypothetical higher-order functional language.

Other defenses against side channels. In this paper, we consider a
purely static approach for detecting resource side channels. How-
ever, there are other possible ways of detecting vulnerabilities and
preventing against side channel attacks. For instance, Bang et al.
use symbolic execution and model counting to quantify leakage for
a particular type of side channel [10]. Pasareanu et al. have recently
implemented a symbolic execution based algorithm for generating
inputs that maximize side channel measurements (namely timing
and memory usage) [54]. Sidebuster [73] uses a hybrid static/dy-
namic analysis to detect side-channels based on irregularities in the
One key advantage of our approach compared to these other tech-
niques is that it can be used to verify the absence of side-channel
vulnerabilities in programs.

There has also been a line of research that focuses for defending
against side channels using runtime systems [49], compilers [50, 57,
58], or secure hardware [48]. Unlike these techniques, our approach
does not result in runtime overhead.

9 CONCLUSIONS
We have proposed a new security policy called ϵ-bounded non-
interference that can be used to verify the absence of resource side
channels in programs. We have also proposed an automated verifi-
cation algorithm, implemented in a tool called Themis, for proving
this property. Our approach verifies the absence of side channels by
combining lightweight static taint analysis with precise relational
verification using a new program logic called QCHL.

We have evaluated our tool, Themis, in a number of ways and
have shown that (a) it can find previously unknown vulnerabilities
in widely used Java programs, (b) it can verify that the repaired ver-
sions of vulnerable programs do not exhibit the original vulnerabil-
ity, and (c) it compares favorably against Blazer, a state-of-the-art
tool for finding timing side channels in Java programs.

There are a number of directions for future work. First, our cur-
rent implementation only provides cost models for timing and
response size; however, we would like to broaden the applica-
bility of Themis by providing cost models for other kinds of re-
sources. Second, our current implementation can verify bounded
non-interference for a given ϵ , but we would also like to automat-
ically infer the smallest ϵ for which the program is safe. While
this extension can be easily done by solving an optimization rather
than a satisfiability problem, our current implementation does not
provide this capability due to limitations in Z3’s OCaml API.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their helpful
feedback. We also thank Calvin Lin for his insightful comments,
Marcelo Sousa for setting up the DESCARTES [65] tool, and the
Jetty developer team for their responsiveness as well as the assis-
tance they provide.

This material is based on research sponsored by DARPA award
FA8750-15-2-0096 as well as NSF Award CCF-1712067. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of the U.S. Government.

REFERENCES
[1] 2017. A timing channel in Jetty. https://github.com/eclipse/jetty.project/commit/

2baa1abe4b1c380a30deacca1ed367466a1a62ea. (2017).
[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of

Simple Branch Prediction Analysis. In Proceedings of the 2Nd ACM Symposium
on Information, Computer and Communications Security (ASIACCS ’07). ACM,
312–320.

[3] Onur Aciiçmez and Werner Schindler. 2008. A Vulnerability in RSA Implemen-
tations Due to Instruction Cache Analysis and Its Demonstration on OpenSSL.
In Proceedings of the 2008 The Cryptopgraphers’ Track at the RSA Conference on
Topics in Cryptology (CT-RSA’08). Springer-Verlag, 256–273.

[4] Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Díez. 2015. Non-
cumulative Resource Analysis. In Proceedings of the 21st International Conference
on Tools and Algorithms for the Construction and Analysis of Systems - Volume
9035. Springer-Verlag New York, Inc., 85–100.

[5] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 526–540.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
53–70.

[7] Diego EstebanAlonso-Blas and Samir Genaim. 2012. On the Limits of the Classical
Approach to Cost Analysis. In Proceedings of the 19th International Conference on
Static Analysis (SAS’12). Springer-Verlag, 405–421.

[8] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and Shiyi Wei. 2017. Decomposition Instead of Self-Composition for
k-Safety. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI).

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014. 259–269.

[10] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Păsăreanu, and Tevfik
Bultan. 2016. String Analysis for Side Channels with Segmented Oracles. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2016). ACM, 193–204.

[11] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.
2014. System-level Non-interference for Constant-time Cryptography. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’14). ACM, 1267–1279.

[12] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verifica-
tion Using Product Programs. In FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.
200–214.

[13] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2013. Beyond 2-Safety:
Asymmetric Product Programs for Relational Program Verification. In Logical
Foundations of Computer Science, International Symposium, LFCS 2013, San Diego,
CA, USA, January 6-8, 2013. Proceedings, Sergei N. Artëmov and Anil Nerode
(Eds.), Vol. 7734. Springer, 29–43.

[14] Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. 2004. Secure information
flow by self-composition. In Computer Security Foundations Workshop, 2004. Pro-
ceedings. 17th IEEE. IEEE, 100–114.

https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea

[15] Nick Benton. 2004. Simple relational correctness proofs for static analyses and
program transformations. In ACM SIGPLAN Notices, Vol. 39. ACM, 14–25.

[16] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming reflection: Aiding static analysis in the presence of reflection and custom
class loaders. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 241–250.

[17] Andrew Bortz and Dan Boneh. 2007. Exposing Private Information by Timing
Web Applications. InWorld Wide Web. ACM, 621–628.

[18] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen
Giesl. 2016. Analyzing Runtime and Size Complexity of Integer Programs. ACM
Trans. Program. Lang. Syst. 38, 4, Article 13 (Aug. 2016), 50 pages.

[19] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.
In Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003.

[20] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional
Certified Resource Bounds. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’15). ACM, 467–478.

[21] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017.
Relational Cost Analysis. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2017). ACM, 316–329.

[22] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. 191–206.

[23] Sujit Rokka Chhetri and Mohammad Abdullah Al Faruque. 2017. Side-Channels
of Cyber-Physical Systems: Case Study in Additive Manufacturing. IEEE Design
& Test (2017).

[24] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer,
337–340.

[25] Guillaume Dufay, Amy Felty, and Stan Matwin. 2005. Privacy-sensitive Infor-
mation Flow with JML. In Proceedings of the 20th International Conference on
Automated Deduction (CADE’ 20). Springer-Verlag, 116–130.

[26] Edward W. Felten and Michael A. Schneider. 2000. Timing attacks on Web
privacy. In CCS 2000, Proceedings of the 7th ACM Conference on Computer and
Communications Security, Athens, Greece, November 1-4, 2000. 25–32.

[27] Cormac Flanagan and K. RustanM. Leino. 2001. Houdini, an Annotation Assistant
for ESC/Java. In Proceedings of the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software Productivity (FME ’01). Springer-
Verlag, 500–517.

[28] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2002. Extended Static Checking for Java. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation (PLDI ’02). ACM, New York, NY, USA, 234–245.

[29] Antonio Flores-Montoya and Reiner Hähnle. 2014. Resource Analysis of Complex
Programs with Cost Equations. Springer International Publishing, Cham, 275–295.

[30] Riccardo Focardi and Roberto Gorrieri. 1995. A Classification of Security Proper-
ties for Process Algebras1. Journal of Computer security 3, 1 (1995), 5–33.

[31] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
Analysis: Concrete Results. In Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems (CHES ’01). Springer-Verlag,
251–261.

[32] Nethanel Gelernter and Amir Herzberg. 2015. Cross-Site Search Attacks. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 1394–1405.

[33] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2014. Get Your Hands Off My
Laptop: Physical Side-Channel Key-Extraction Attacks on PCs. In Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings. 242–260.

[34] Jan Goguen and Meseguer Jose. 1982. Security policies and security models. In
Symposium on Security and Privacy. IEEE Computer Society Press, 11–20.

[35] James W Gray III. 1992. Toward a mathematical foundation for information flow
security. Journal of Computer Security 1, 3-4 (1992), 255–294.

[36] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games -
BringingAccess-Based CacheAttacks onAES to Practice. In 32nd IEEE Symposium
on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA. 490–
505.

[37] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. SPEED: Precise
and Efficient Static Estimation of Program Computational Complexity. In Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’09). ACM, 127–139.

[38] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. 2011. Differential
Privacy Under Fire. In 20th USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings.

[39] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate Amortized
Resource Analysis. ACM Trans. Program. Lang. Syst. 34, 3, Article 14 (Nov. 2012),
62 pages.

[40] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic
Resource Bound Analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2017). ACM, 359–373.

[41] Jan Hoffmann and Martin Hofmann. 2010. Amortized Resource Analysis with
Polynomial Potential: A Static Inference of Polynomial Bounds for Functional Pro-
grams. In Proceedings of the 19th European Conference on Programming Languages
and Systems (ESOP’10). Springer-Verlag, 287–306.

[42] Jan Hoffmann and Zhong Shao. 2014. Type-Based Amortized Resource Analysis
with Integers and Arrays. Springer International Publishing, 152–168.

[43] Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage
for First-order Functional Programs. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’03). ACM,
185–197.

[44] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical
Abstract Domains for Static Analysis. In Proceedings of the 21st International
Conference on Computer Aided Verification (CAV ’09). Springer-Verlag, 661–667.

[45] Paul Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in CryptologyâĂŤCRYPTOâĂŹ96. Springer,
104–113.

[46] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO ’96, 16th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings. 104–
113.

[47] Shuvendu K. Lahiri and Shaz Qadeer. 2009. Complexity and Algorithms for Mono-
mial and Clausal Predicate Abstraction. In Proceedings of the 22Nd International
Conference on Automated Deduction (CADE-22). Springer-Verlag, 214–229.

[48] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace Obliv-
ious Computation. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’15). ACM, 87–101.

[49] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Mitigate
Side-channel Attacks. In Proceedings of the 39th Annual International Symposium
on Computer Architecture (ISCA ’12). IEEE Computer Society, 118–129.

[50] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2006. The
Program Counter Security Model: Automatic Detection and Removal of Control-
flow Side Channel Attacks. In Proceedings of the 8th International Conference on
Information Security and Cryptology (ICISC’05). Springer-Verlag, 156–168.

[51] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. 2001. Jif: Java information flow. Software release. Located at
http://www. cs. cornell. edu/jif 2005 (2001).

[52] David A. Naumann. 2006. From Coupling Relations to Mated Invariants for Check-
ing Information Flow. Springer Berlin Heidelberg, 279–296.

[53] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan Hoffmann.
2017. Verifying and Synthesizing Constant-Resource Implementations with
Types. In 38st IEEE Symposium on Security and Privacy, S&P.

[54] Corina Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-Run
Side-Channel Analysis Using Symbolic Execution and Max-SMT. In Computer
Security Foundations Symposium. IEEE.

[55] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run
Side-Channel Analysis Using Symbolic Execution and Max-SMT. In IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 -
July 1, 2016. 387–400.

[56] François Pottier and Vincent Simonet. 2003. Information Flow Inference for ML.
ACM Trans. Program. Lang. Syst. 25, 1 (Jan. 2003), 117–158.

[57] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-
Channels through Obfuscated Execution. In 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, Washington, D.C., 431–446.

[58] Ashay Rane, Calvin Lin, andMohit Tiwari. 2016. Secure, Precise, and Fast Floating-
Point Operations on x86 Processors. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 71–86.

[59] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. 2016.
Sparse Representation of Implicit Flows with Applications to Side-channel Detec-
tion. In Proceedings of the 25th International Conference on Compiler Construction
(CC 2016). ACM, 110–120.

[60] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[61] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and
Aditya V. Nori. 2013. A Data Driven Approach for Algebraic Loop Invariants.
In Proceedings of the 22Nd European Conference on Programming Languages and
Systems (ESOP’13). Springer-Verlag, 574–592.

[62] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015. 1310–1321.

[63] Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A Simple and Scalable
Static Analysis for Bound Analysis and Amortized Complexity Analysis. Springer

International Publishing, 745–761.
[64] Moritz Sinn, Florian Zuleger, and Helmut Veith. 2017. Complexity and Resource

Bound Analysis of Imperative Programs Using Difference Constraints. Journal
of Automated Reasoning (2017), 1–43.

[65] Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying K-safety
Properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY, USA,
57–69.

[66] Tachio Terauchi and Alexander Aiken. 2005. Secure Information Flow as a Safety
Problem. In Static Analysis, 12th International Symposium, SAS 2005, London, UK,
September 7-9, 2005, Proceedings. 352–367.

[67] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON ’99). IBM Press, 13–.

[68] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS In Advances in Cryptology - EUROCRYPT 2002, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings. 534–546.

[69] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A language for
automatically enforcing privacy policies. In ACM SIGPLAN Notices, Vol. 47. ACM,
85–96.

[70] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA. Springer Berlin Heidelberg, 346–367.

[71] Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program
Analysis of the Cross-Product. In Proceedings of the 15th International Symposium
on Formal Methods (FM ’08). Springer-Verlag, Berlin, Heidelberg, 35–51.

[72] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2012. Language-based
Control and Mitigation of Timing Channels. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’12). ACM, 99–110.

[73] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen. 2010. Side-
buster: Automated Detection and Quantification of Side-channel Leaks in Web
Application Development. In Computer and Communications Security. ACM, 595–
606.

[74] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. 2011. Bound
Analysis of Imperative Programs with the Size-change Abstraction. In Proceedings
of the 18th International Conference on Static Analysis (SAS’11). Springer-Verlag,
280–297.

APPENDIX A: PROOF OF SOUNDNESS
Lemma .1. Let program P = λp⃗.S . If the following premises hold:
• p⃗1 = α (p⃗), p⃗2 = α (p⃗)

• |= I → p⃗1
l
= p⃗2

l
∧ p⃗1

h
, p⃗2

h

• Σ is sound
• Σ ⊢ CanSynchronize(e1, e2, S1, S2, I)

Then |= I → (e1 ↔ e2).

Proof. According to figure 6, if Σ ⊢ CanSynchronize(e1, e2, S1, S2, I),
then at least one of the two conditions must be true:
• |= I → (e1 ↔ e2)
• e1 ≡α e2 ∧ S1 ≡α S2 ∧ Σ ⊢ e1 : low ∧ Σ ⊢ e2 : low

If the first condition is true, then the conclusion trivially holds.
Otherwise, since Σ is sound, we know that e1 and e2 depend solely
on p⃗1

l and p⃗2l , respectively. According to the first two premises,
I → p⃗1

l
= p⃗2

l . It follows that I → e1 = e2 and therefore |= I →
(e1 ↔ e2). □

Lemma .2. Let vars(S) be the set of all free variables in S . If
vars(S1) ∩ vars(S2) = ∅, then S1; S2 is semantically equivalent to
S2; S1.

Proof. Suppose Γ ⊢ S1; S2 : Γ′, r . Since vars(S1) and vars(S2)
are mutually disjoint, we could break Γ into three partitions Γ =
Γ1 ⊔ Γ2 ⊔ Γ3, where dom(Γ1) = vars(S1), dom(Γ2) = vars(S2) and
dom(Γ3) = dom(Γ) \ vars(S1) \ vars(S2). Since Si does not touch
Γj where i , j, we have

Γ1 ⊢ S1 : Γ′1 , r1 Γ2 ⊢ S2 : Γ′2 , r2
It follows that

Γ ⊢ S1 : Γ′1 ⊔ Γ2 ⊔ Γ3, r1 Γ ⊢ S2 : Γ1 ⊔ Γ′2 ⊔ Γ3, r2

Γ′1 ⊔ Γ2 ⊔ Γ3 ⊢ S2 : Γ′1 ⊔ Γ′2 ⊔ Γ3, r1 + r2

Γ1 ⊔ Γ′2 ⊔ Γ3 ⊢ S1 : Γ′1 ⊔ Γ′2 ⊔ Γ3, r2 + r1

Using the operational semantics rule for sequential composition
shown in figure 4, this means

Γ ⊢ S1; S2 : Γ′1 ⊔ Γ′2 ⊔ Γ3, r1 + r2

Γ ⊢ S2; S1 : Γ′1 ⊔ Γ′2 ⊔ Γ3, r2 + r1

As S1; S2 and S2; S1 both have the same effect on Γ and consume
the same amount of resource, they are semantically equivalent. □

Lemma .3. Let program P = λp⃗.S . Under the assumption that the
following premises hold:
• p⃗1 = α (p⃗), p⃗2 = α (p⃗)

• |= Φ→ p⃗1
l
= p⃗2

l
∧ p⃗1

h
, p⃗2

h

• Σ is sound
If Σ ⊢ ⟨Φ⟩ S1 ⊛ S2⟨Ψ⟩, then ⊢ {Φ} S1; S2 {Ψ}.

Proof. By structural induction on proof rules shown in figure 5.
• Rule (1).
By inductive hypothesis, ⊢ {Φ}S2; S1{Ψ}. Since S1 and S2 be-
longs to two different alpha-renamed copies of the program,
we have vars(S1) ∩ vars(S2) = ∅. Using lemma .2, we get
⊢ {Φ}S1; S2{Ψ}

• Rule (2).
By inductive hypothesis, ⊢ {Φ}S1; skip; S2{Ψ}. As S1; skip is
semantically equivalent to S1, we have ⊢ {Φ}S1; S2{Ψ}.
• Rule (3).
By inductive hypothesis, ⊢ {Φ′}S2; S3{Ψ}. Also, we know
{Φ}S1{Φ′}. Using the sequence rule in standard Hoare logic,
we derive ⊢ {Φ}S1; S2; S3{Ψ}.
• Rule (4).
By inductive hypothesis, ⊢ {Φ}S {Ψ}. As S is semantically
equivalent to S ; skip, we get {Φ}S ; skip{Ψ}.
• Rule (5).
By inductive hypothesis, ⊢ {Φ ∧ e}S1; S ; S3{Ψ1} and ⊢ {Φ ∧
¬e}S2; S ; S3{Ψ2}. Since |= Ψ1 → Ψ1∨Ψ2 and |= Ψ2 → Ψ1∨Ψ2,
according to the consequence rule in standardHoare logic we
have {Φ∧e}S1; S ; S3{Ψ1 ∨Ψ2} and {Φ∧¬e}S2; S ; S3{Ψ1 ∨Ψ2}.
With the sequence rule in standard Hoare logic, assume

(1) ⊢ {Φ ∧ e}S1{Φ1}
(2) ⊢ {Φ1}S ; S3{Ψ1 ∨ Ψ2}
(3) ⊢ {Φ ∧ ¬e}S2{Φ2}
(4) ⊢ {Φ2}S ; S3{Ψ1 ∨ Ψ2}.
Let Φ′ = wp (Ψ1∨Ψ2). It follows immediately from (2) and (4)
thatΦ1 → Φ′ andΦ2 → Φ′. We could apply the consequence
rule again to (1) and (3) and derive ⊢ {Φ ∧ e}S1{Φ′} and
⊢ {Φ∧¬e}S2{Φ′}. Using the condition rule in standard Hoare
logic, we have {Φ}if e then S1 else S2{Φ′}. Combining (2),
(4), sequence rule and the definition ofwp, we could finally
derive ⊢ {Φ}if e then S1 else S2; S ; S3{Ψ1 ∨ Ψ2}.
• Rule (6).
By inductive hypothesis, ⊢ {Ψ′}S ; S ′{Ψ}. We also know that
⊢ {Φ}while e1 do S1{Φ′} and ⊢ {Φ′}while e2 do S2{Ψ′}. Ap-
plying the sequence rule in standard Hoare logic twice, we
get ⊢ {Φ}while e1 do S1;while e2 do S2; S ; S ′{Ψ}. Addition-
ally, S and while e2 do S2 comes from two different alpha-
renamed copies so vars(S) ∩ vars(while e2 do S2) = ∅. We
could apply lemma .2 and get
⊢ {Φ}while e1 do S1; S ;while e2 do S2; S ′{Ψ}
• Rule (7).
By inductive hypothesis, ⊢ {I ∧ e1 ∧ e2}S1; S2{I ′} and ⊢
{I ∧ ¬e1 ∧ e2}S ; S ′{Ψ}. As |= I ′ → I , we have ⊢ {I ∧ e1 ∧
e2}S1; S2{I } due to consequence rule. Now we may apply the
while rule in standard Hoare logic to obtain ⊢ {I }while e1 ∧
e2 do (S1; S2){I ∧ ¬(e1 ∧ e2)}.
Now, as following two statements are semantically equiva-
lent:
- while e1 ∧ e2 do (S1; S2)
- while e1 ∧ e2 do (S1; S2);while e1 do S1;while e2 do S2
we could replace the former with the latter:

⊢ {I }while e1 ∧ e2 do (S1; S2);while e1 do S1;
while e2 do S2{I ∧ ¬(e1 ∧ e2)}

According to lemma .1, |= I → (e1 ↔ e2). But we also
know that the precondition I ∧ ¬(e1 ∧ e2) holds before
the second loop while e1 do S1. This implies I¬e1 ∧ ¬e2
and therefore both of the two loops while e1 do S1 and
while e2 do S2 would not execute, whichmeans ⊢ {I∧¬(e1∧

e2)}while e1 do S1;while e2 do S2{I ∧ ¬(e1 ∧ e2)}. Apply-
ing the consequence rule here we end up with
⊢ {I }while e1 do S1;while e2 do S2{I∧¬(e1∧e2)}. Combin-
ing this with |= Φ→ I and the second inductive hypothesis
we finally get
⊢ {Φ}while e1 do S1; S ;while e2 do S2; S ′{Ψ}.

□

Theorem .4 (Soundness). Assuming soundness of taint environ-
ment Σ, if Σ ⊢ SideChannelFree (λp⃗.S, ϵ), then the program λp⃗.S
does not have an ϵ-bounded resource side-channel.

Proof. We know that Σ is sound and |= Φ → p⃗1
l
= p⃗2

l
∧

p⃗1
h
, p⃗2

h . Therefore, lemma .3 applies, and we get ⊢ {Φ}Sτ1 ; S
τ
2 {Ψ}.

Additionally, |= Ψ → |τ1 − τ2 | ≤ ϵ |. Using the consequence rule in
standard Hoare logic, we obtain ⊢ {Φ}Sτ1 ; S

τ
2 {|τ1 − τ2 | ≤ ϵ |}. By the

soundness of Hoare logic, it follows that |= {Φ}Sτ1 ; S
τ
2 {|τ1−τ2 | ≤ ϵ |}.

By the soundness of self-composition, this means that

∀a⃗1, a⃗2. a⃗1
l = a⃗2

l
∧ a⃗1

h , a⃗2
h =⇒ |τ1 − τ2 | ≤ ϵ

By lemma 4.1, τ1 = RP (a⃗1) and τ2 = RP (a⃗2). Substitute τ with RP
we arrive at our conclusion

∀a⃗1, a⃗2. (a⃗1
l = a⃗2

l
∧ a⃗1

h , a⃗2
h) =⇒ |RP (a⃗1) − RP (a⃗2) | ≤ ϵ

□

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Threat Model

	3 Side-Channels and Bounded Non-interference
	4 Verifying Bounded Non-interference Using QCHL
	4.1 Language
	4.2 QCHL Proof Rules
	4.3 Loop Invariant Generation

	5 System Design and Implementation
	5.1 Design Overview
	5.2 System Implementation

	6 Evaluation
	6.1 Comparison Against Blazer
	6.2 Detection of Known Vulnerabilities
	6.3 Discovery of Zero-Day Vulnerabilities

	7 Limitations
	8 Related Work
	9 Conclusions
	References

