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ABSTRACT
There has been a significant interest in applying programming-by-
example to automate repetitive and tedious tasks. However, due to
the incomplete nature of input-output examples, a synthesizer may
generate programs that pass the examples but do not match the user
intent. In this paper, we proposeMars, a novel synthesis framework
that takes as input a multi-layer specification composed by input-
output examples, textual description, and partial code snippets
that capture the user intent. To accurately capture the user intent
from the noisy and ambiguous description, we propose a hybrid
model that combines the power of an LSTM-based sequence-to-
sequence model with the apriori algorithm for mining association
rules through unsupervised learning. We reduce the problem of
solving a multi-layer specification synthesis to a Max-SMT problem,
where hard constraints encode well-typed concrete programs and
soft constraints encode the user intent learned by the hybrid model.
We instantiate our hybrid model to the data wrangling domain
and compare its performance against Morpheus, a state-of-the-art
synthesizer for data wrangling tasks. Our experiments demonstrate
that our approach outperforms Morpheus in terms of running time
and solved benchmarks. For challenging benchmarks, our approach
can suggest candidates with rankings that are an order of magnitude
better than Morpheus which leads to running times that are 15x
faster than Morpheus.

CCS CONCEPTS
• Software and its engineering→ Programming by example;
Automatic programming.
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1 INTRODUCTION
In today’s data-centric world, data analytics has become one of the
key elements in our daily life, including science, politics, business,
and international relations. On the other hand, due to the messy
nature of data in different application domains, data scientists spend
close to 80% [8] of their time performing data wrangling tasks,
which are considered to be the “janitor work" of data science.

To mitigate this problem, in recent years, there has been signif-
icant interest in end-user program synthesis for data science, in
which the goal is to automate tedious data analytics tasks from infor-
mal specifications, such as input-output examples [13, 16] or natural
language [27, 32]. For instance, programming-by-example (PBE)
has been used to automate tedious tasks such as string manipula-
tions in Excel [16], data wrangling tasks on tabular and hierarchical
data [13, 31], and SQL queries [30]. Despite significant progress
in PBE systems, expressing the user intent still remains a major
challenge. As a result, due to the incomplete nature of input-output
examples, a synthesizer may generate programs that pass the exam-
ples but do not match the user intent. In that case, the user has to
provide additional examples to refine the results generated by the
synthesizer, which imposes a huge burden to the end-user as it is
tricky to figure out the root cause of the wrong candidates [22] and
come up with new examples to refine the output of the synthesizer.

To address the above limitation, this paper aims to design a
synthesis framework that accurately captures the user intent. By
looking at hundreds of relevant data analytics questions from Stack-
Overflow, we observe that an end-user typically describes her prob-
lem in a combination of input-output examples, natural language
description, partial code snippet, etc. To give readers our insight,
consider an example from StackOverflow in Figure 1. Here, the user
has an input table and wants to transform it into an output table
with a different shape. As shown in Figure 1, the correct solution
(on the right) requires merging two column (i.e., unite), aggregat-
ing (i.e., group_by, summarise) the sum of another column, and
finally pivoting (spread) the returning table. To solve this bench-
mark, it takes Morpheus [13], the state-of-the-art synthesizer for
data wrangling tasks, around five minutes. Moreover, if the pro-
gram found by Morpheus does not match the user intent, she has
to refine the input-output examples and rerun the synthesizer.

In a lot of cases, the information provided by the end-user typi-
cally goes beyond input-output examples. In most helper forums
(e.g., StackOverflow), we observed that people usually describe
problems in the combination of natural language and input-output
examples. For instance, looking at the example in Figure 1, the user
not only provides input-output examples, but also indicates a rough
“sketch” of the solution through natural language. For instance, the
“reshape” and “count” keywords indicate that the solution should
use library functions that perform pivoting (i.e. spread or gather)
and aggregation (i.e., group_by + summarise), respectively. Other
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keywords such as “total found” suggest that sum should be used
together with summarise, and the keyword “Sp_B_pos” that the
function call unite should be used. If we use arrows to visualize the
connection between text description and function calls from data-
wrangling libraries, we can observe a strong connection between
the user intent and the solution.

However, real-world textual information is inherently noisy and
ambiguous. As a result, it is very challenging to derive the right
mapping from the textual information to their corresponding func-
tion calls. Second, even if we have the right mapping, it is still
unclear how to integrate this information into most existing PBE
systems [5, 16, 30, 31, 33], which typically rely on their efficient
search algorithms by leveraging the syntax or semantics of the
input-output examples.

In this paper, we proposeMars, a novel synthesis framework that
takes as input amulti-layer specification that appears in a large class
of applications. Here amulti-layer specification is composed of input-
output examples, textual description, and partial code snippets
that express the user intent. To solve a multi-layer specification
synthesis (MSS) problem, Mars encodes input-output examples as
hard constraints which have to be satisfied, and denotes additional
preferences (e.g., textual description, partial code snippet, etc) as
soft constraints which are preferably satisfiable. After that, the MSS
problem is reduced to the maximum satisfiability modulo theories
(Max-SMT) problem which can be efficiently solved by an off-the-
shelf SMT solver [6, 9]. The Max-SMT encoding of the MSS problem
aims to satisfy the input-output constraints and maximize the user
intent that is obtained from natural language, partial code snippet,
and intermediate results.

To accurately capture the user intent from the noisy and am-
biguous description, we propose a hybrid neural architecture that
combines the power of an LSTM-based sequence-to-sequence(i.e.,
seq2seq) [29] model and the apriori algorithm [2] for mining associ-
ation rules. In particular, our seq2seq model encodes the probability
of a symbolic program (i.e., a program of which constants are un-
known.) given its corresponding textual description. However, like
other deep learning applications, the performance of a seq2seq
model heavily relies on the quality and quantity of the training
data. Therefore, as shown in Section 7, for benchmarks of which
solutions are complicated and rarely appear in the training set, our
seq2seq model may not suggest the right candidates. To mitigate
this problem, we leverage the apriori algorithm for mining the extra
hidden information that cannot be covered by the seq2seq model.
Intuitively, through unsupervised learning, the apriori algorithm is
used to mine association rules that indicate the hidden connections
between words and individual functions. After that, we use the
association rules for refining the original rankings of the seq2seq
model.

To evaluate the effectiveness of our technique, we instantiate
Mars into the data wrangling domain and compare it against Mor-
pheus [13], the state-of-the-art PBE synthesizer for data wrangling
tasks. We evaluate both approaches on the 80 benchmarks from the
Morpheus paper[14], and show that Mars outperforms Morpheus
in terms of running time and number of benchmarks being solved.
For challenging benchmarks, our approach is on average 15x faster
than the Morpheus tool.

To summarize, this paper makes the following key contributions:

• We design a customized deep neural network architecture for
learning the user’s preference using an aligned corpus that
maps the user’s textual information to the desired solutions.
• We design a novel multi-layer specification that allows the
end-user to specify her intent using soft and hard constraints.
• We propose a Max-SMT based synthesis framework that
takes as input a multi-layer specification and enumerates
solutions that are close to the user’s intent. Our framework is
parameterized with the underlying neural networks and the
DSL, which can be easily instantiated to different domains.
• We integrate Mars’s hybrid model into the Morpheus tool
and empirically evaluate our approach in the data wrangling
domain by showing that Mars outperforms the state of the
art in running time and number of benchmarks solved.

2 OVERVIEW
In this section, we give an overview of our approach with the
aid of the motivating example in Figure 1. Specifically, as shown
in Figure 2, we use a simplified domain-specific language (DSL)
based on dplyr and tidyr, which are two popular libraries for data
wrangling tasks in R.

In this example, the user wants to perform a complex data wran-
gling task which requires concatenating two columns (i.e., unite),
aggregation (i.e., summarise), and table pivoting (i.e., spread). We
now explain the key ideas that enable Mars to solve this complex
problem. We use abstract syntax trees (AST) to represent programs.
For example, Figure 3 shows an AST that represents a symbolic
program where some of the nodes are still unknown. A symbolic
program can be instantiated in many ways and can generate several
thousand concrete programs. For instance, the concrete program
represented in Figure 4 corresponds to the following assignment:

{N1 7→ select, N2 7→ gather,N3 7→ [1,2],

N4 7→ x0,N5 7→ [1,3]}

This approach, while being general, has several drawbacks. First,
since input-output examples are imprecise specifications, a synthe-
sizer may generate a candidate that does not match the user intent,
which requires the user to provide additional examples to refine
the result [16, 30]. Second, given a specific task, there can be many
candidates satisfying the input-output examples but only a few of
them match the user intent. In this case, a synthesizer typically
enumerates solutions according to some heuristic, such as the size
of AST [15], or keywords provided by the user [30]. None of the
previous work proposes a systematic solution for unifying the user
intent from different sources.

Mars takes a different step by proposing a multi-layer specifi-
cation that combines input-output examples with additional hints
from the user. For instance, looking at the StackOverflow example
in Figure 1, in addition to the input-output tables, the user also
provides extra hints using natural language and intermediate re-
sults. Specifically, the word “reshape” in the title indicates that the
solution should use either spread or gather, and “count” suggests
the occurrence of aggregate functions(i.e.,summarise, group_by).

To incorporate the additional information, we propose a novel hy-
brid neural architecture by leveraging the advantages of a seq2seq [29]
model and the apriori algorithm for learning association rules [1].
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r script to reshape and count columns within dataset

I need to reformat the data so that there is just one row per site visit (i.e. in a given site name and
date combo) with columns for total found by species and the fish status (i.e. speciesA_pos,
SpeciesA_neg, Sp_B_pos.. etc).
figured I could use the reshape function but still need to sum within site visits as reshape will take the
first row. My thoughts were to use split/apply/aggregate/for loops etc but tried various combinations
and not getting anywhere. apologies I'm not familiar with R. any comments appreciated!

TBL_7=unite(input,`COL`,`species`,`inf_status`)
TBL_3=group_by(TBL_7,`site`,`COL`)
TBL_1=summarise(TBL_3,COL2=sum(`TOT`))
Output=spread(TBL_1,`COL`,`COL2`)

title

description

description

unite

group_by

summarise

sum

spread

SOLUTION

I/O Example

I/O Example

description

Figure 1: A motivating example from StackOverflow.1

T → xi | spread(T, COL,COL) | unite(T, COL, COL)

group_by(T, LIST) | summarise(T, AG, COL)

gather(T, LIST) | select(T, LIST)

LIST→ [1] | [1,2] | ... | [4,5]

COL→ 0 | ... | 10

AG→ sum | mean | max | min

Figure 2: The grammar of a DSL for data wrangling tasks in
dplyr and tidyr.

In particular, the seq2seq model takes as input the text description
and returns the most likely symbolic program according to a statis-
tical model trained from a corpus. For the example in Figure 1, our
seq2seq model suggests some of the following candidates:

{mutate,group_by,summarise,spread}(92)
{group_by,summarise,mutate,select}(91)

. . .

{unite,group_by,summarise,spread}(79)
. . .

Each item in the list is a pair (P,wi ) where P represents a symbolic
program that we learn from the data, and wi denotes the likeli-
hood of being part of the solution. By leveraging the additional
description from the user, the seq2seq model is able to suggest can-
didates that are close to the user intent. However, due to the size
and quality of the training data, for complex solutions which rarely
appear in the corpus, the seq2seq model is unlikely to suggest the
correct symbolic program. As a result, a synthesizer may still spend
a significant amount of time enumerating wrong candidates. For in-
stance, by following the ranking generated from the seq2seq model,
a synthesizer has to explore 130 symbolic programs before finding
the right candidate.

To mitigate the above limitation, we leverage the apriori algo-
rithm [2] for mining association rules. Intuitively, an association
rule, which is learned from a corpus of data through unsupervised
learning, aims to identify the hidden connections among the key-
words. For instance, given the text description in Figure 1, our
algorithm is able to discover the following rule which suggests that

1https://stackoverflow.com/questions/39369502

spread has a high chance to appear in the solution:

{reshape, count} ⇒ {spread}

and the following rule indicates that unite should also appear in
the solution:

{_, reshape} ⇒ {unite}

Using our refinement algorithm discussed in Section 4.3, our system
is able to incorporate the hints from the association rules to adjust
the distribution of the seq2seq model. For instance, after running
the refinement algorithm, the previous ranking is adjusted to:

...

{unite,group_by,summarise,spread}(109)
...

{mutate,group_by,summarise,spread}(96)
{group_by,summarise,mutate,select}(94)

Observe that the score of all three candidates get increased as they
are connected to association rules learned from data. The score of
the correct candidate increases more as this candidate matchesmore
rules than others. As a result, a synthesizer only needs to explore
less than 30 symbolic programs before reaching the right one.

To incorporate the above ranking from our statistical model,
Mars provides soft constraints in the form of (f (s1, ..., sk ),wi )

where f is a k-nary predicate over DSL constructs with likelihood
weightwi . For instance, the symbolic program of the correct candi-
date can be expressed with the following soft constraints:

(occurs(unite), 109) ∧ (occurs(group_by), 109)∧

(occurs(summarise), 109) ∧ (occurs(spread), 109)∧

(hasChild(group_by,unite), 109)∧

(hasChild(summarise,group_by), 109)∧

(hasChild(spread,summarise), 109)

Here, hasChild(si , sj ) is a binary predicate which indicates that the
DSL construct si should be the parent of sj in the solution. Similarly,
occurs(si ) is a unary predicate asserting that si should occur in
the solution. Given the soft constraints generated by the hybrid
model, the underlying Max-SMT solver in Mars can enumerate
candidates in a way that

∑
ωi is maximized. In other words, Mars

always prioritizes candidates that not only pass the input-output
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N1

N2 N3

N4 N5s4

select

gather

s5

s3

Figure 3: An example of a symbolic program.

examples, but are also consistent with the user intent expressed in
natural language.

3 PROBLEM FORMALIZATION
This section proposes a general setting for our synthesis problem,
and formally states the definitions of our multi-layer specification
and maximal synthesis.

Given a domain-specific language (DSL) described by a context-
free grammar G, our synthesis framework searches the space of all
possible programs up to a given depth. A DSL is a tuple (Σ,R, S),
where Σ, R, and S represent the set of symbols, productions, and
the start symbol, respectively. Each symbol χ ∈ Σ corresponds to
our built-in DSL construct (e.g., +, spread, gather, select etc),
constants, and variables. Program inputs are expressed as symbols
x1, . . . ,xk ∈ Σ. Every production p ∈ R has the form p = (A →
χ (A1, . . . ,Ak )), where χ ∈ Σ is a DSL construct andA1, . . . ,Ak ∈ Σ
are symbols for the arguments. Symbolic and concrete programs are
defined using symbols from the DSL.

Definition 1. Symbolic Program. A symbolic program P is
an abstract syntax tree (AST) where some labels of the AST nodes are
represented as symbolic variables yet to be determined.

Example 1. Figure 3 shows a symbolic program with depth of
size two. Here, s3, s4, and s5 denote symbolic variables which corre-
sponds to unknown symbols. This symbolic program corresponds to
select(gather(?, ?), ?), where the “?” denotes symbolic variables
that still need to be determined.

Intuitively, a symbolic program P represents partial programs
where some of the symbols are unknown. In Section 4, we will
introduce a neural architecture for learning themost likely symbolic
programs from a corpus of data.

Definition 2. Concrete Program. A concrete program P is an
AST where each node is labeled with a symbol from the DSL.

Example 2. Figure 4 shows an AST which corresponds to the con-
crete program: select(gather(x0, [1,3]), [1,2]).

Definition 3. Hard Specification. The hard specification ex-
presses a set of constraints that the symbolic program P has to satisfy.
In classical PBE systems, we often refer to the input-output examples
as the hard specification. In particular, P(Ein ) = Eout .

Example 3. InMars, the hard specification is used to encode the
input-output requirement from the end-user. E.g., in figure 1, the input
and output tables are translated into hard constraints inMars.

N1

N2 N3

N4 N5x0

select

[1,2]gather

[1,3]

Figure 4: An example of a concrete program.

Definition 4. Soft Specification. The soft specification denotes
a set of constraints that the symbolic programP preferably satisfies. In
particular, each soft constraint is denoted by a pair (pr (χ1, . . . , χk ),ω)
where pr (χ1, . . . , χk ) is a k-ary predicate over the DSL constructs and
ω represents the predicate confidence.

Example 4. InMars, the soft specification is used to encode the
user preference in the form of natural language. For instance, the
unary predicate (occurs(χi ),ωi ) encodes that a DSL construct χi
should appear in the program with confidence ωi . Similarly, the bi-
nary predicate (hasChild(χi , χj ),ωj ) denotes that a DSL construct
χi should appear as the parent of χj in the program with confidence
ωj . Note that the weight of each predicate is automatically learned
from a corpus of data.

Now we are ready to formally state our synthesis problem.

Definition 5. Maximal Multi-layer Specification Synthe-
sis. Given specification (E,Ψ, Σ) where E = (Tin , Tout ), Ψ =

⋃
(χi ,

ωi ), and Σ represents all symbols in the DSL, the Maximal Multi-
Specification Synthesis problem is to infer a program P such that:
• P is a well-typed expression over symbols in Σ.
• P(Tin ) = Tout .
•
∑
ωi is maximized.

4 NEURAL ARCHITECTURE
In this section, we propose a hybrid neural architecture for inferring
the most promising symbolic programs given the user description.
In particular, our architecture incorporates a sequence-to-sequence
(seq2seq) model and the apriori algorithm for discovering associa-
tion rules through unsupervised learning. While the seq2seq model
is for estimating the initial score of a symbolic program, the asso-
ciation rules are further used to adjust the initial score by mining
hidden information that can not be identified by the seq2seq model.

4.1 Sequence-to-Sequence Model
The problem of inferring the most promising symbolic programs
from user description can be viewed as a translation between two
different languages. In particular, our goal is to translate from natu-
ral language to symbolic programs expressed in our DSL. Inspired
by the recent success in natural language processing, we apply a
seq2seq model with Long Short-Term Memory (LSTM) [17] cells.

As shown in Figure 5, given a question-solution pair (D, S), where
a question is a user description composed by word tokens d :

D = (d1,d2, . . . ,dn ),
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LSTM
Cell

embedding

...... LSTM
Cell

reshape comment appreciate <SOS> unite group_by summarise

unite group_by summarise spread

encoder decoder

count
......

-0.31 -0.52 -0.69 -0.39
-1.91

unite group_by summarise spread

!": {count}->{group_by, summarise}
!#: {aggregate}->{summarise}
!$: {reshape}->{spread}
!%: {unique}->{filter}
... rule set

programdescriptionreshape count ... comment appreciate

rules applied &', &), …

score

final score 2.3

Figure 5: The hybrid neural architecture inMars

and a solution is a symbolic program composed by a sequence of
functions si : 2

S = (s1, s2, . . . , sm ),

the seq2seq model is used to estimate the probability of P(S |D),
which is then given by:

P(S |D) = P(s1, s2, . . . , sm |d1,d2, . . . ,dn )

=

m∏
t=1

P(st |v, s1, s2, . . . , st−1),

where v is a fixed-dimensional vector representation of the user
description generated by the encoder.

Internally, the seq2seq model is composed by two components:
the encoder and the decoder. The encoder is an LSTM cell that takes
as input a question D and generate its corresponding vector rep-
resentation v . At every time step t , we feed each token dt from
the question to the encoder and compute the following functions as
given by the LSTM mechanism:

zt = σ (Wz · [ht−1,dt ])

rt = σ (Wr · [ht−1,dt ])

h̃t = tanh(W · [rt ∗ ht−1,dt ])

ht = (1 − zt ) ∗ ht−1 + zt ∗ h̃t ,

where at time step t , ht is the hidden state,W∗ are network param-
eters that will later be learned from data, [, ] is the vector concate-
nation operation, · is matrix multiplication, and σ (sigmoid) and
tanh are both activation functions that are given by:

σ (x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

The final vector representation of a question is given by the last
hidden state: v = hn .

2Each symbolic program ignores all constant variables and only preserves the name
of each function.

Similar to the encoder, the decoder is also composed by an LSTM
cell which takes as input a symbolic program represented by a
sequence of functions. The output of the decoder is a distribution
of functions given the current hidden state hi :

ui =Wu · hi + bu ,

whereWu and bu are both learnable parameters, and the probability
for a specific function (for example, the jth function) at time step i
is estimated by:

P(si, j ) = P(si, j |v, s1, s2, ..., si−1)

=
exp(ui, j )∑
j exp(ui, j )

,

where ui, j is the jth element of the vector.
Finally, we use the back propagation method with negative log

likelihood loss to learn the parameters of the neural network. The
probability of a symbolic program given a question is computed by
estimating the product of the probability at each time step. We take
logarithm of every time step to prevent underflow of the final result,
which gives the equation of the probability score as follows:

P(S |D) = P(s1, s2, ..., sm |d1,d2, ...,dn )

=

m∑
t=1

log P(st |v, s1, s2, ..., st−1),

where the most promising symbolic programs have higher scores.

4.2 Learning Association Rules
As shown later in section 7, due to the quality of the training data,
our seq2seqmodel alone does not always achieve good performance.
Specifically, for complex benchmarks of which solutions rarely
appear in the training data, it is difficult for the seq2seq model to
suggest the right candidates. On the other hand, even though the
user cannot figure out the exact solution for her problem, she may
still indicate partial information of the desired solution using some
keywords or phrases. In order to discover hidden information that
can not be inferred by the seq2seq model, we leverage the apriori
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algorithm to mine association rules that will later be used to adjust
the rankings from the seq2seq model.

As shown in figure 5, letQ be the union of all tokens that appear
in the questions and all functions that appear in a solution:

Q = q1,q2, ...,qc ,

and let E be the set of all tokens in a question-solution pair (S,D):

E =
⋃
(si ,dj ) where si ∈ S,dj ∈ D

An association rule r of a given set E is defined by:

r : X ⇒ Y ,

where X ,Y ⊆ Q . For example,

{unite,wide} ⇒ {spread}

indicates that if the two keywords "unite" and "wide" appear in
the question, then the function spread is also appearing in the
corresponding solution. Also, rules can apply on functions:

{filter, summarise} ⇒ {group_by}

which means if both filter and summarise appear in the solution,
then the function group_by also appears in the same solution.

To learn the association rules, we run the apriori algorithm on
more than 30,000 answers3 from Stackoverflow. Since the apriori
algorithm is based on unsupervised learning, it may generate rules
that are not useful. To address this issue, we further filter out the
association rules of which confidence are low according to the
following formulas:

supp(X ) =
|{e ∈ E,X ⊆ e}|

|E |

conf(X ⇒ Y ) =
supp(X ∪ Y )
supp(X )

.

Here, supp indicates the frequency of X that appears in the dataset,
and conf represents how often the rule holds.

4.3 Score Refinement Algorithm
In this section, we describe an algorithm that refines the score of
the seq2seq model using the association rules in section 4.2.

As shown in Algorithm 1, the key idea of our refinement pro-
cedure is to take as input a symbolic program S together with its
original score c from the seq2seq model, and produce a new score
cr according to the association rules R discussed in section 4.2.
Internally, the refined score cr is computed based on an accumu-
lative boosting ratio b that is initialized at line 4. Then for each
association rule ri , the algorithm updates the accumulative boosting
ratio based on a weight function θ as well as a match function that
decides whether the current rule ri = X ⇒ Y applies to the current
symbolic program together with its description (D, S):

match(r ,D, S) =
{
1 ∀e ∈ X ∪ Y , e ∈ D or e ∈ S
0 otherwise

Furthermore, the weight function θ is used to measure the quality
of association rule ri by taking several factors into account, includ-
ing the confidence (i.e. conf) and support (i.e., supp) discussed in
section 4.2, number of keywords that appear in rule ri , and cost
3An answer towards a specific question is usually composed by some natural language
description and solution code, which fits the prerequisits of association rules mining.

N1

N3 N4N2

Figure 6: An example of a bounded symbolic program.

of the DSL construct (e.g. compared to select, mutate is more
computationally intensive).

Algorithm 1 Symbolic Program Score Refinement Algorithm

1: procedure Refinement(R, D, S , c , θ )
2: input: association rule set R, question D, solution S with its

corresponding score c and weight function θ
3: output: refined score cr
4: b ← 0 ▷ accumulative boosting ratio
5: for rule ri ∈ R do
6: b ← b + θ (ri ) ·match(ri ,D, S)
7: cr ← c + b · |c | ▷ update score
8: return cr

5 MAXIMAL SPECIFICATION SYNTHESIS
In this section, we describe how Mars leverages the statistical
information (discussed in section 4) to enumerate programs that
are close to user intent.

As we mentioned earlier, most PBE synthesizers [5, 13, 16, 30,
31, 33] perform program enumeration until they find a program
that satisfies the input-output examples provided by the user. In
order to perform program enumeration, we first need to represent
the set of all possible programs up to a given depth. Consider a
DSL D = (Σ,R, S) where Σm represent DSL constructs with arity-m
and m is the greatest arity between DSL constructs. A symbolic
program P represented by a tree of depth k where each node has
exactlym children can represent all programs that use at most k − 1
production rules. Figure 6 shows a 3-ary tree with depth 2 that
represents all programs that can be constructed using at most 1
production rule from the DSL shown in Figure 2. Note thatm = 3
since the greatest arity between DSL constructs is 3.

Example 5. Assigning N1 7→ unite, N2 7→ input, N3 7→ 1, N4 7→
2 corresponds to the program “unite(input, 1, 2)” which unites columns
1 and 2 from table input.

Given a symbolic program P and a DSL D, we encode the set of
all possible concrete programs as an SMT formula φ. The Satisfi-
ability Modulo Theories (SMT) problem is a decision problem for
formulas that are composed of multiple theories. To encode sym-
bolic programs, we use the quantifier-free fragment of the theory
of Linear Integer Arithmetic (LIA). A model of φ can be mapped to
a concrete program by assigning a symbol to each node in P.

Variables. For each node Ni , we use an integer variable with
domain between 0 and r , where r = |Σ|. Assigning Ni 7→ k means
that we assign to Ni the corresponding symbol. Let idx : Σ →
N0 be a mapping between a symbol and its position. Since some
production rules p may have arity smaller thanm, there may exist
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some children nodes Nj that are not assigned any symbols. To
enforce the invariant that each node is assigned exactly one symbol,
we introduce a special symbol pe with index 0 that is assigned to
nodes without symbols, i.e. Nj 7→ 0.

Example 6. Consider the DSL in Figure 2. idx maps each symbol
to a corresponding integer that identifies its position. For example the
input xi is mapped to index 1, spread to index 2, unite to index 3, etc.

Constraints. Let I , O correspond to all symbols that are consis-
tent with the input and output examples, respectively. To guarantee
that all models correspond to well-typed concrete programs we
must enforce the following constraints.

(1) The root node N1 of P will be assigned a symbol that is
consistent with the output type.∨

p∈O
N1 = idx(p)

Example 7. Let O = {xi , spread, unite, group_by, summarise,
gather, select}. The following constraint enforces that the output type
is consistent with the output example:
N1 = idx(xi )∨N1 = idx(spread)∨N1 = idx(unite)∨idx(group_by)∨
N1 = idx(summarise) ∨ N1 = idx(gather) ∨ N1 = idx(select).

(2) Let N be the set of all nodes and ChNi the set of children
nodes of Ni ∈ N . Furthermore, let C(p,Ni ) be the set of
production rules that are consistent with production p and
can be assigned to Ni . If a production rule p = (A →
χ (A1, . . . ,Ak )) is assigned to node Ni then all m children
Nj , . . . , Nj+m will have to be consistent with A1, . . . ,Ak .∧

p∈Σ,Ni ∈N
Ni = idx(p) =⇒

∧
Nj ∈ChNi

∨
pj ∈C(p,Nj )

Nj = idx(pj )

Example 8. To guarantee that if production p = unite is assigned
to node N1 then its children are consistent withp, we add the following
constraints to φ:
N1 = idx(unite) =⇒

(
N2 = idx(xi ) ∨ N2 = idx(spread) ∨

N2 = idx(unite) ∨ idx(group_by) ∨ N2 = idx(summarise) ∨ N2 =
idx(gather) ∨ N2 = idx(select)

)
.

Similar constraints are added to guarantee the consistency of N3 and
N4 when unite is assigned to N1.

(3) Let L the set of leaf nodes and T the set of terminal symbols.
Only terminal symbols can be assigned to a leaf node.∧

Ni ∈L

∨
p∈T

Ni = idx(p)

Example 9. Consider the leaf node N2. To restrict the occurrence
of terminals in N2, we add the following constraints:
N2 = idx(xi ) ∨ N2 = idx([1]) ∨ N2 = idx([1,2]) ∨ . . . ∨ N2 =
idx([4,5]) ∨ N2 = idx(0) ∨ . . . ∨ N2 = idx(10).

5.1 Enumerating Maximal Programs
Enumerating models from the SMT formulaφ described in Section 5
will correspond to concrete programs. However, this enumeration
does not take into consideration the user intent captured by the
neural network described in Section 4. To capture this information,
we extend the SMT formula to a Max-SMT (Maximum Satisfiability
Modulo Theories) formula. A Max-SMT formula is composed by

a set of hard and soft constraints. The Max-SMT problem is to
satisfy all hard constraints while maximizing the number of soft
constraints that can be simultaneously satisfied. This problem can
be further generalized to the weighted Max-SMT problem where
each soft constraint ci can be associated with a weight wi . As
hard constraints, we use the constraints described in Section 5
that guarantee all enumerated programs are well-typed. As soft
constraints, we use the predicates occurs and hasChild encoded as
follows.

(1) Let predicate (occurs(pi ),wi ) denote that a production rule
pi occurs with likelihoodwi in the final program. This pred-
icate can be encoded into Max-SMT with the following soft
constraints with weightwi .∧

pi ∈Λ

∨
Ni ∈N

Ni = idx(pi )

Example 10. The predicate (occurs(spread), 80) is encoded by
adding the following soft constraint to φ with weight 80:
N1 = idx(spread) ∨ N2 = idx(spread) ∨ N3 = idx(spread) ∨ N4 =
idx(spread).

(2) Let predicate (hasChild(pi ,pj ),wi ) denote that production
pi has production pj as its children with likelihoodwi . This
predicate is encoded as follows where all soft constraints
have weightwi .∧
pi ,pj ∈Λ,Ni ∈N

Ni = idx(pi ) =⇒
∧

Nj ∈ChNi

Nj = idx(pj )

Example 11. The predicate (hasChild(summarise, group_by), 92)
is encoded by adding the following constraints to φ with weight 92:(

N1 = idx(summarise) =⇒ N2 = idx(group_by)
)
∧(

N1 = idx(summarise) =⇒ N3 = idx(group_by)
)
∧(

N1 = idx(summarise) =⇒ N4 = idx(group_by)
)

Maximizing the satisfaction of these soft constraints will guaran-
tee that we enumerate programs that are closer to the user intent.
Note that even though the predicates occurs and hasChild suffice
to capture the information extracted by the neural network, our
approach is not limited to these predicates and can be extended by
adding additional predicates (e.g., happens before).

6 IMPLEMENTATION
Data collection and preparation. We collect 20,640 pages

from Stackoverflow [28] using the search keywords “tidyr” and
“dplyr” (with testing benchmarks excluded), where each page con-
tains a single question and multiple solutions. By removing duplicate
contents and questions with no solutions, we obtain 16,459 question-
solution pairs. Each question is pre-processed by a standard NLP
pipeline that includes: stop word removal, lemmatization and tok-
enization, and a solution is represented as a sequence of DSL con-
structs (i.e., function names). The question-solution pairs are then
used to train a seq2seq model. For the association rules mining, we
extract descriptions from answers and their corresponding solutions
and totally obtain 37,748 transactions as the input to the Apriori
algorithm. To ensure the validity of our experiments, we remove
all the benchmarks from the collected data.
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NeuralNetwork andHybridArchitecture. Webuild a seq2seq
neural network using the PyTorch framework [23]. The hyper-
parameters (e.g., numbers of dimensions of the word/function em-
bedding layer and LSTM hidden layer) are obtained through a
simple grid search. For the seq2seq model in Mars, we set both the
dimensions of word/function embedding layer and LSTM hidden
layer to be 256, where the embedding layer maps 25,004 words and
14 functions4 to vectors of the dimension 256. Furthermore, a single
layer perceptron is connected to the hidden layer of each output
time step in the decoder, mapping from a dimension of 5125 to 14,
which is used to predict the probability of each function given the
previous hidden state and the current input.

As for the association rulemining, we apply the Efficient-Apriori [11]
package to discover useful association rules that can be further ap-
plied to refine the original ranking generated by the seq2seq model.
We then select valid rules according to the following criteria:
• confidence ≥ 0.9 or support ≥ 0.003.
• Each valid rule should have at least 1 word and 1 function.
And the number of functions in the rules shall not exceed 2.
• Each valid rule should not contain any stop words, which
builds upon the English stop words and includes additional
words and functions that we consider less indicative.

By filtering out less relevant rules, we obtain 187 association rules.

Machine configuration. We train our seq2seq model on a ma-
chine from Google Cloud Platform with a 2.20GHz Intel Xeon CPU
and an NVIDIA Tesla K80 GPU. All synthesis tasks were run on a
laptop equipped with Intel Core i5 CPU and 16GB memory. Since
the Morpheus tool is only available on a virtual machine [14], we
used this virtual machine to run all program synthesis experiments.
It took around 8 hours to train our hybrid model.

7 EVALUATION
We evaluated Mars by conducting experiments that are designed
to answer the following questions:
• Q1: Do our multi-layer specification and neural architecture
suggest candidates that are close to the user intent?
• Q2: What is the impact of the neural architecture in Mars
on the performance of a state-of-the-art synthesizer for data
wrangling tasks?
• Q3: How is the performance of Mars affected by the quality
of the corpus?

7.1 Quality of Suggested Candidates
To evaluate the benefit of the multi-layer specification and neural
architecture in Mars, we instantiate the tool to the data wrangling
domain, where data scientists tend to spend about 80% of their time
doing tedious and repetitive tasks. In particular, we use the data in
section 6 to train the n-gram model from the Morpheus paper [13],
the seq2seq model discussed in section 4.1, and the hybrid neural
architecture described in Figure 5. Since the output of each model

4There are 25,000 natural language words in the word vocabulary and 10 functions in
the function vocabulary. Each vocabulary contains 4 special helper tokens, namely
namely “<PAD>” (empty placeholder), “<SOS>” and “<EOS>” (the start and end of a
sequence), “<UKN>” (out-of-vocabulary word).
5Since we are using separate seq2seq structures for title and question, the concatenation
of the hidden layers from both are of a dimension of 256×2=512.

is a distribution of symbolic programs, we run all three models on
the original benchmarks from Morpheus, which contains 80 data
wrangling tasks using two popular R libraries, namely, tidyr and
dplyr. In particular, the data wrangling DSL contains 60 produc-
tion rules and can induce a gigantic search space of the symbolic
programs, posing a challenge for state-of-the-art synthesizers. As
shown in Morpheus’ user study, data scientists solved on average
two benchmarks in one hour. For each benchmark, we then use the
seq2seq model and hybrid neural architecture to enumerate sym-
bolic programs and record the ranking of the correct candidate that
matches the user intent. Finally, we manually checked all solutions
synthesized by MARS and made sure that they are semantically
equivalent to the reference solutions. Because the n-gram model in
Morpheus only considers programs in the posts on StackOverflow
and ignore user description, it provides a global ranking shared by
all benchmarks.

Results. As shown in Table 1, the average ranking and standard
deviation of the n-gram model are 42 and 70, respectively. In other
words, a synthesizer would need to explore 42 symbolic programs
on average. Recall that a symbolic program may correspond to sev-
eral thousand concrete programs. The standard deviation is used to
quantify the stability of the model. In contrast, by incorporating the
user descriptions, the seq2seq model achieves an average ranking
of 25 and a standard deviation of 39. Finally, with the help of the
association rules, the hybrid model obtains the best performance
with an average ranking of 18 and a standard deviation of 26. The
result shows that our hybrid model not only suggests candidates
that are close to user intent (i.e., low average), and it is also more
stable (i.e., low standard deviation) across different benchmarks.

Table 1: Statistics for different model rankings.

model n-gram seq2seq hybrid

average* 42 25 18
std.*1 70 39 26

1 standard deviation.
* computed based on the rankings of the
correct solutions.

Table 2: Counts of top-1s and top-3s in different models.

model n-gram seq2seq hybrid

Top-1 total* 0 8 11
Top-3 total* 2 18 29
* computed based on the rankings of the cor-
rect solutions.

We further look into the number of top-1 and top-3 candidates
that are correctly suggested by each model. As shown in Table 2,
without user descriptions, the n-gram model fails to predict any
correct candidates in top-1 and only suggests correct candidates
in top-3 for two benchmarks. By leveraging user descriptions, the
seq2seq model is able to figure out the right top-1 and top-3 can-
didates for 8 and 18 benchmarks, respectively. Finally, our hybrid
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Figure 7: Comparison of run times (in seconds) between n-
gram (x-axis, used inMorpheus) and seq2seq (y-axis, used in
Mars) using a logarithmic scale.

model successfully suggests top-1 and top-3 candidates for 11 and
29 benchmarks.

7.2 Effectiveness of Hybrid Neural
Architecture

In this section, we further investigate the impact of a better ranking
on the end-to-end performance of a synthesizer. Specifically, we
integrate the previous three statistical models into Morpheus, a
state-of-the-art synthesizer for data wrangling tasks.

Results. Figure 7 and Figure 8 show the results of running Mor-
pheus on its original 80 benchmarks with three different models
(namely n-gram model in original Morpheus and seq2seq/hybrid
model in Mars) and a time limit of 300 seconds. In particular, each
dot in the figure represents the pairwise running time of a specific
benchmark under different models. As a result, the dots near the
diagonal indicates that the performance of the two models is similar
in those benchmarks. For instance, Figure 8 shows the comparison
between the n-gram model and our hybrid model in terms of run-
ning time. Specifically, our hybrid model outperforms Morpheus’
original n-gram model in 58 of 80 benchmarks. In the meantime,
Morpheus times out on 11 benchmarks with the n-gram model,
whereas it only times out on 2 benchmarks with our hybrid model.
The performance of the seq2seq model is between the above two
models by outperforming Morpheus n-gram model in 47 of 80
benchmarks and timing out on 8 benchmarks. Table 3 shows the

Table 3: Statistics of running time.

model avg. speedup1 #timeouts∗

ngram 1x 11
seq2seq 6x 8
hybrid 15x 2

1 average speedup on challenging solved bench-
marks.

* number of timeouts on all benchmarks.
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101
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Figure 8: Comparison of run times (in seconds) between n-
gram (x-axis, used inMorpheus) and hybrid (y-axis, used in
Mars) using a logarithmic scale.

average speedup for challenging benchmarks (i.e. > 3 library calls)
with respect to then-grammodel for benchmarks that can be solved
by both models. On average, the seq2seq model is 6x faster than the
n-gram model and the hybrid model is 15x faster than the n-gram
model. The result further confirms that a statistical model that ac-
curately captures user intent tends to have a better performance in
running time.

Remarks. To understand the cases where our technique runs
significantly faster, we manually look into some of the benchmarks.
We notice that our technique performs especially well if the user
states her problem in a clear way. For instance, in this post from
StackOverflow, 6 although the user does not know the exact solution
for her complex task, she is still able to convey the transformations
using keywords (e.g., “count” and “unique”) and partial code snip-
pets. Even with these discrete signals, our hybrid model manages
to guide Morpheus to the correct program in less than a second:
TBL_7=filter(p25_input1,`b` > 1)
TBL_3=unite(TBL_7,key_ab,`a`,`b`)
TBL_1=group_by(TBL_3,`key_ab`)
morpheus=summarise(TBL_1,e=n())

In contrast, Morpheus with its original n-gram model takes several
minutes to find the right candidate.

7.3 Discussion
Like any other technique, our approach also has its own limitations.
For instance, in Figure 8, there are still some benchmarks where
n-gram performs better, we manually inspect all these cases and
notice that the issue is caused by the following reasons:

Insufficient text. In this post, 7 the user only provides input-
output examples but her description barely contains any useful
signals that allow our hybrid model to make a good prediction.

Contextual text. In this post, 8 the user explicitly states that
she does not want to use the mutate function:
6https://stackoverflow.com/questions/33549927
7https://stackoverflow.com/questions/26733449
8https://stackoverflow.com/questions/29447325
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“... I can solve my problem using dplyr’s mutate but
it’s a time-intensive, roundabout way to achieve my
goal. ...”

However, after tokenizing the natural description and removing all
the stop words (e.g., “but” ), our hybrid model loses the contextual
information and takes mutate as the keyword.

Misleading text. In contrast to the previous example, in this
post, 9 the user explicitly wants to use the mutate function:

“... I want to use mutate to make variable d which is
mean of a,b and c. ...”

However, since we directly adopt the DSL from Morpheus and
the DSL does not support this special usage of mutate, our hybrid
model proposes candidates that do not lead to the correct solution.

7.4 Threats to Validity
Quality of the corpus. Even though the hybrid neural archi-

tecture is more resilient to the limitation of the existing data set, the
performance of Mars is still sensitive to the quality of the training
data. To mitigate this concern, we train our statistical model using
all relevant posts from StackOverflow. In the future, we also plan
to leverage transfer learning to incorporate resources written in
other languages (e.g., Python and Matlab).

Benchmark selection. Due to the expressiveness of theDSL, in
terms of complexity, the benchmarks from Morpheus [13] may not
represent the actual distribution of the questions on StackOverflow.
While the comparison on the Morpheus benchmarks may not
completely unveil the benefit of our hybrid neural architecture, and
a representative test suite may provide a more comprehensive view,
we believe our comparison is sufficient to show the strength of our
technique. Furthermore, since both our neural architecture and the
enumerator are designed in domain-agnostic way, we also believe
our technique can generalize to other domains.

8 RELATEDWORK
Program synthesis has been extensively studied in recent years. In
this section, we briefly discuss prior closely-related work.

Programming by Example. Our technique is related to a line
of work on programming-by-example (PBE) [5, 13, 16, 30, 31, 33].
PBE has been widely applied to different domains such as string
manipulation [5, 16], data wrangling [13, 31], and SQL queries [30,
33]. Among these techniques, the Morpheus tool is directly related
to the data wrangling client to whichMars is instantiated. However,
unlike Morpheus that is specialized to table transformation, the
techniques in Mars can be generalized to other synthesis tasks.
Compared to existing PBE systems, Mars proposes a novel neural
architecture that can learn user preferences from natural language.

Programming by Natural Language. Programming-by-natu-
ral-language (PBNL) is another paradigm [10, 18, 24, 27, 32] that
is related to our approach. Specifically, the Sqlizer [32] tool takes
input as natural language and generates its corresponding query in
SQL. There are other PBNL systems that translate natural language
into simple commands in smartphone [18], IFTTT scripts [24], and
scripts for text editing [10, 27]. Compared to previous PBNL systems,
9https://stackoverflow.com/questions/33401788

our neural architecture can reasonably capture the user intent
even in the presence of low-quality training data. Furthermore,
in addition to natural language, the multi-layer specification in
Mars also accepts input-output examples as hard constraints which
provide a stronger correctness guarantee.

Machine Learning for Program Synthesis. The neural archi-
tecture in Mars is relevant to two major directions for applying
machine learning to program synthesis. In particular, The first line
of work is to directly generate programs from inputs in the form
of natural language or input-output examples [20, 21], which is
inspired by the seq2seq model in machine translation. Although we
also incorporates a seq2seq model as part of the neural architecture,
we further leverage the apriori algorithm for mining association
rules to mitigate the quality of training data.

The second approach [19] incorporates statistical information to
guide a program synthesizer. In other words, a statistical model is
used to suggest the most promising candidates a synthesizer has to
explore. For instance, DeepCoder [3] uses a deep neural network
that can directly predict programs from input-output examples.
The Morpheus tool [13] adopts an n-gram model for synthesizing
data wrangling tasks. Similarly, the SLANG [26] tool integrates
an n-gram model for code completion. Raychev et al. [25] extend
the previous approach to obtain a statistical model that can guide
a synthesizer in the presence of noisy examples. The Neo [12]
synthesizer generalizes previous approaches by incorporating an
arbitrary statistical model as its “decider" to guide the enumerative
search. While Mars proposes a novel neural architecture to suggest
the most promising candidates, it can also leverage advanced tech-
niques from previous work, such as pruning infeasible candidates
through deduction [13] and conflict-driven learning [12].

Interactive Program Synthesis. The goal of our technique is
also aligned with tools in interactive program synthesis [4, 7, 22],
where the goal is to iteratively refine user intent through incorpo-
rating user decision in the synthesizer loop. While our approach
leverages natural language to capture the user intent, we believe
the idea of interactive synthesis is complementary to our approach
and can further refine the distribution of our statistical model.

9 CONCLUSION
We propose Mars, a novel synthesis framework that takes as input
a multi-layer specification which combines input-output exam-
ples, textual description, and partial code snippets to capture the
user intent. To solve a multi-layer specification synthesis (MSS)
problem, Mars encodes input-output examples as hard constraints
and denotes additional preferences (e.g., textual description, par-
tial code snippet, etc) as soft constraints. The MSS problem is re-
duced to a Max-SMT formula which can be solved by an off-the-self
solver [6, 9]. To accurately capture user intent from noisy and am-
biguous descriptions, we propose a novel hybrid neural architecture
that combines the power of a sequence-to-sequence model and the
apriori algorithm for mining association rules. We instantiate our
hybrid model to the data wrangling domain and compare its per-
formance against Morpheus on its original 80 benchmarks. Our
results show that our approach outperforms Morpheus and it is
on average 15x faster for challenging benchmarks.
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