
Tree Traversal Synthesis Using Domain-Specific
Symbolic Compilation

Yanju Chen
yanju@cs.ucsb.edu

University of California, Santa Barbara
USA

Junrui Liu
junrui@cs.ucsb.edu

University of California, Santa Barbara
USA

Yu Feng
yufeng@cs.ucsb.edu

University of California, Santa Barbara
USA

Rastislav Bodik
bodik@cs.washington.edu
University of Washington

USA

ABSTRACT

Efficient computation on tree data structures is important in com-

pilers, numeric computations, and web browser layout engines.

Efficiency is achieved by statically scheduling the computation into

a small number of tree traversals and by performing the traversals

in parallel when possible. Manual design of such traversals leads

to bugs, as observed in web browsers. Automatic schedulers avoid

these bugs but they currently cannot explore a space of legal traver-

sals, which prevents exploring the trade-offs between parallelism

and minimizing the number of traversals.

We describe Hecate, a synthesizer of tree traversals that can

produce both serial and parallel traversals. A key feature is that

the synthesizer is extensible by the programmer who can define a

template for new kinds of traversals. Hecate is constructed as a

solver-aided domain-specific language, meaning that the synthe-

sizer is generated automatically by translating the tree traversal

DSL to an SMT solver that synthesizes the traversals. We improve

on the general-purpose solver-aided architecture with a scheduling-

specific symbolic evaluation that maintains the engineering advan-

tages solver-aided design but generates efficient ILP encoding that

is much more efficient to solve than SMT constraints.

On the set of Grafter problems, Hecate synthesizes traversals

that trade off traversal fusion to exploit parallelism. Additionally,

Hecate allows defining a tree data structure with an arbitrary

number of children. Together, parallelism and data structure im-

provements accelerate the computation 2× on a tree rendering

problem. Finally, Hecate’s domain-specific symbolic compilation

accelerates synthesis 3× compared to the general-purpose compi-

lation to an SMT solver; when scheduling a CSS engine traversal,

this ILP-based synthesis executes orders of magnitude faster.

CCS CONCEPTS

• Software and its engineering→ Automatic programming.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507751

KEYWORDS

symbolic compilation, program synthesis, tree traversal

ACM Reference Format:

Yanju Chen, Junrui Liu, Yu Feng, and Rastislav Bodik. 2022. Tree Traversal

Synthesis Using Domain-Specific Symbolic Compilation. In Proceedings

of the 27th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’22), February 28 ś

March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3503222.3507751

1 INTRODUCTION

Traversal of tree structures is the foundation behind many ap-

plications: compilers leverage traversals of abstract syntax trees

(ASTs) to analyze and optimize source codes. Layout engines in

web browsers rely on traversals of render trees to determine the

locations and appearances of HTML elements on web pages. Im-

plementing tree traversals is a daunting task as it needs to strike a

good balance between modularity and performance. On one hand,

due to the complexity of modern layout engines, browser develop-

ers have to manually design scheduling strategies for rendering

tree traversals in exchange for better performance. On the other

hand, tree traversals in compilers are designed in a modular way,

where mutually dependent traversals read and update attributes of

ASTs [41]. This provides a great opportunity for automated sched-

uling of tree traversals. In particular, traversals that operate on the

same node can be merged to reduce the overhead of node visiting

and improve locality.

Even though manual scheduling of tree traversals offers fine-

grained control for maximizing performance of a layout engine,

the complexity of layout semantics (e.g., from W3C CSS standards)

make it difficult to maintain the infrastructure and fix the notorious

bugs. For instance, the Servo layout engine contains several bugs

that have been open for over five years [14, 25] due to a mismatch

between the intended semantics and the architecture chosen for its

implementation1.

Automated scheduling of tree traversals aims to merge modular

passes (or visitors) that operate on the same node of a tree. However,

existing approaches are far from satisfactory. For instance, there are

approaches that are specialized to certain types of tree traversals,

1A Servo developer remarked that łit took three weeks before I realize[d] the actual
complexity of the problemž, which refers to the bug that is still open by the time of
this submission; the Servo developers have resolved to delay fixing it until a complete
rewrite of the layout engine is done [38].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1030

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507751
https://doi.org/10.1145/3503222.3507751

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

such as TreeFuser [40] and Grafter [41]. But they leverage deter-

ministic rewrite rules as well as automata-based representations

that are complex to maintain. Synthesis-based tools like FTL [32]

express tree computations using attribute grammars and leverage

constraint solvers (i.e., Prolog) to find candidate solutions that sat-

isfy the dependencies among tree computations. However, FTL

requires domain experts for translating the layout semantics into

constraints in Prolog, which is error-prone.

Motivated by these observations, we introduce Hecate, a syn-

thesizer of tree traversals that can produce both serial and parallel

traversals. In particular,Hecate provides a high-level tree language

for defining templates for new kinds of traversals. Furthermore, the

core synthesis engine of Hecate is built on top of a solver-aided

framework [45], which lifts the execution of an interpreter for tree

language programs into constraints that can be solved by off-the-

shelf solvers. As a result, Hecate eliminates the enormous engi-

neering efforts in FTL while preserving the efficiency and flexibility

of exploring different design choices. To use Hecate to synthesize

a concrete traversal, the developer only needs to specify a sim-

ple traversal template with holes yet to be filled with computation

rules defined by the tree language. After that, Hecate completes

the traversals using a counterexample-guided inductive synthesis

(CEGIS) loop [43]: the synthesizer searches for a candidate traversal

that works for the initial examples. The verifier then looks for a

counterexample that fails for the traversal and invokes the syn-

thesizer again to find a new candidate that is consistent with the

counterexample. The process continues until the verifier cannot

find additional counterexamples.

As we show later in the evaluation, direct interpretation of full se-

mantics of a tree traversal will lead to difficult-to-solve constraints

due to path explosions. To address this, Hecate employs a domain-

specific symbolic compilation strategy, which maintains the usabil-

ity of symbolic compilation, yet scales to problems orders of magni-

tude larger. The key insight is a semantic projection layer between

the interpreter and the symbolic compilation engine that tailors

the constraint generation procedure. Specifically, we introduce a

trace language that disentangles complex dependencies from time

domain to relational domain, where constraints can be equivalently

expressed independent of time, thus clearing out path explosions

while still ensuring the correctness of constraints. Under domain-

specific symbolic compilation, the trace language generates integer

linear programming (ILP) constraints that can be solved efficiently.

We implementHecate and compare it againstGrafter and FTL,

showing that our tool is expressive, efficient, and flexible. On the

set of Grafter problems, Hecate synthesizes traversals that trade

off traversal fusion to exploit parallelism. Additionally, Hecate

allows defining a tree data structure with an arbitrary number of

children. Together, parallelism and data structure improvements

accelerate the computation 2× on a tree rendering problem. Fi-

nally, Hecate’s domain-specific symbolic compilation accelerates

synthesis 3× compared to the general-purpose compilation to an

SMT solver; when scheduling a CSS engine traversal, this ILP-based

synthesis executes orders of magnitude faster.

To summarize, we make the following contributions:

• We propose a CEGIS framework for tree traversals.

1 class Box{

2 public:

3 int w0,h0; // input (default)

4 int w1,h1; // helper

5 int w,h; // output (final)

6 }

7

8 class Inner: public Box{

9 public:

10 Box* fc; // first child

11 Box* nx; // next sibling

12 }

13 void Inner::calcWidth() {

14 fc->calcWidth();

15 nx->calcWidth();

16 w = max(w0, fc->w1);

17 w1 = max(w, nx->w1);

18 }

19 void Inner::calcHeight() {

20 fc->calcHeight();

21 nx->calcHeight();

22 h = max(h0, fc->h1);

23 h1 = h + nx->h1;

24 }

25

26 class Leaf: public Box{

27 public:

28 Box* nx; // next sibling

29 }

30 void Leaf::calcWidth() {

31 nx->calcWidth();

32 w = w0;

33 w1 = max(w, nx->w1);

34 }

35 void Leaf::calcHeight() {

36 nx->calcHeight();

37 h = h0;

38 h1 = h + nx->h1;

39 }

(a) unfused version

1 /* same as unfused

2 *

3 *

4 *

5 *

6 */

7

8 /* same as unfused

9 *

10 *

11 *

12 */

13 void Inner::fusedCalc() {

14 fc->fusedCalc();

15 nx->fusedCalc();

16 w = max(w0, fc->w1);

17 w1 = max(w, nx->w1);

18 h = max(h0, fc->h1);

19 h1 = h + nx->h1;

20 }

21

22

23

24

25

26 /* same as unfused

27 *

28 *

29 */

30 void Inner::fusedCalc() {

31 nx->fusedCalc();

32 w = w0;

33 w1 = max(w, nx->w1);

34 h = h0;

35 h1 = h + nx->h1;

36 }

37

38

39

(b) fused version

Figure 1: Pseudo-code class definitions (unfused and fused

versions) for rendering tree example.

• We propose a domain-specific trace language that disentan-

gles complex dependencies from time domain to relational

domain, which results in easy-to-solve constraints.

• We implement the proposed ideas in a tool called Hecate

and demonstrate that it achieves 3× speed-up on Grafter

benchmarks compared to general-purpose symbolic compi-

lation.

2 OVERVIEW

In this section, we illustrate how Hecate works using a running

example.

A Rendering Tree Example. Layout engines in modern web

browsers utilize the box model in rendering procedures. This exam-

ple demonstrates simplified behaviors of two types of boxes: Inner

boxes and Leaf boxes where the former can hold child boxes and

the latter can’t. Figure 1(a) shows the realization of the boxes. In

the example:

1031

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

𝒏𝟏 𝒏𝟐

𝒏𝟎

𝒏𝟑 𝒏𝟒

h
h0

h1

h1
h

h1

w
w0

w1

w1
w

w1

fc

nx

fc

nx

Leaf node

Inner node

var access path

dependency

(𝒂) (𝒃) (𝒄)

(𝒅) (𝒆)

Figure 2: A motivating example tree with different proper-

ties shown (a): access paths; (b)-(e): dependencies between

attributes of nodes.

• Line 16: The final width of an Inner box (denoted by w) is

decided by the larger one between its default width (denote

by w0) and the maximum width of its children (denoted by

fc->w1).

• Line 22: The final height of an Inner box (denoted by h) is

decided by the larger one between its default height (denoted

by h0) and the summed height of its children (denoted by

fc->h1).

• Line 33, 38: For a Leaf node, its final width and height are

decided by its provided default values (denoted by w0 and h0,

respectively).

• Specifically, the helper variable w1 records the maximum

final width among a node and all its siblings accessible by nx,

and the helper variable h1 records the summed final height

of a node and all its siblings accessible by nx. In other words,

a node can refer to w1 of its first child as the maximum final

width among all its children, and refer to h1 of its first child

as the summed final height of all its children.

The two methods calcWidth and calcHeight demonstrate the com-

putations for final width and height, respectively.

Typically, rendering a box requires a proper tree traversal to

compute all the attribute values. Besides, in real-world use case

scenarios, a finer-grained scheduling of computations is usually

required as an optimization. As shown in Figure 1(b), a more effi-

cient method fusedCalc is synthesized to perform width and height

computations at the same time. Because attribute values may de-

pend upon one another, solving for a correct order of attribute

evaluations becomes challenging.

How Hecate Works. Now with Hecate, the user starts by pro-

viding: 1) a symbolic traversal as shown in Figure 4(a) with slots 𝜄𝑖
in which we can schedule at most one computation rule from the

grammar, 2) an example tree shown in Figure 2(a), and 3) the corre-

sponding semantics written in Hecate’s visitor language (shown

in Figure 3). Hecate then automatically synthesizes a concrete tra-

versal by filling the slots with computation rules while respecting

all the read-write dependencies, as shown in Figure 4(b).

More specifically, executing the traversal over the example tree

on an Inner node (e.g., 𝑛1) first recursively computes the attributes

1 interface Box{

2 input w0,h0: int;

3 output w1,w,h1,h: int;

4 }

5 class Inner: Box{

6 children {

7 nx : Optional[Box];

8 fc : Optional[Box];

9 }

10 rules {

11 self.w := max(self.w0, fc.w1);

12 self.w1 := max(self.w, nx.w1);

13 self.h := max(self.h0, fc.h1);

14 self.h1 := self.h + nx.h1;

15 }

16 }

17 class Leaf: Box{

18 children {

19 nx : Optional[Box];

20 }

21 rules {

22 self.w := self.w0;

23 self.w1 := max(self.w, nx.w1);

24 self.h := self.h0;

25 self.h1 := self.h + nx.h1;

26 }

27 }

Figure 3: Class definitions in Hecate for rendering tree ex-

ample.

1 traversal layout {

2 case Inner{

3 recur fc;

4 recur nx;

5 𝜄0;

6 𝜄1;

7 𝜄2;

8 𝜄3;

9 }

10 case Leaf{

11 recur nx;

12 𝜄4;

13 𝜄5;

14 𝜄6;

15 𝜄7
16 }

17 }

(a) symbolic

1 traversal layout {

2 case Inner{

3 recur fc;

4 recur nx;

5 eval self.w;

6 eval self.h;

7 eval self.w1;

8 eval self.h1;

9 }

10 case Leaf{

11 recur nx;

12 eval self.w;

13 eval self.h;

14 eval self.w1;

15 eval self.h1;

16 }

17 }

(b) concrete

Figure 4: Symbolic and concrete tree traversals for rendering

tree example.

of its child nodes (line 3 in Figure 4(b), i.e., 𝑛3 and 𝑛4 in Figure 2(a))

and its next sibling (line 4, i.e., 𝑛2), and then attributes of itself (line

5-8). For a Leaf node, the computation is similar but without the

recursion on the children.

Figure 5 illustrates the overview of Hecate, which instantiates a

CEGIS loopwith two phases: 1) Given the specification that contains

class definitions as attribute grammar, initial trees, and a symbolic

traversal, the synthesizer searches for a concrete traversal, and

sends it to the verifier; 2) The verifier checks the correctness of the

concrete traversal over all possible example trees (up to depth 𝑘)

1032

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

traversal (concrete)

trees

grammar

traversal

(symbolic)

Interpreter

Verifier

counterexample tree

solution

Symbolic

Evaluator

Solver

constraints

trace language
domain-specific layer

Figure 5: Overview of Hecate.

and returns a counterexample tree that fails the current traversal.

Then the synthesizer finds a new candidate that is consistent with

the newly added counterexample tree. This process continues until

the verifier can not find additional counterexamples to refute the

current traversal, which will be returned as the correct solution.

To synthesize the desired traversal,Hecate leveragesRosette [45]

to lift an interpreter for tree traversal into a synthesizer through

symbolic compilation. In particular, given a symbolic traversal with

slots, symbolic compilation expands each slot into all possible

choices of computation rules, and executes the traversal to generate

dependency constraints under different choices. A concrete traver-

sal is then obtained by solving the constraints using off-the-shelf

SMT solvers [18, 24].

While a faithful interpretation of the semantics of the traver-

sal usually causes path explosions, as choices of rules depend on

choices made on preceding execution steps, it generates complex

SMT constraints that are hard to solve, thus damaging the perfor-

mance. Our solution is to insert a domain-specific layer below the

interpreter and above the symbolic engine (i.e., Rosette), which

exposes a domain-specific trace language that still allows us to write

the interpreter conveniently, while avoiding explicit path condi-

tions and generating compact ILP constraints that are easier to

solve by off-the-shelf ILP solvers [24].

3 PROBLEM FORMULATION

In order to precisely describe our synthesis problem, we first present

some definitions that we use throughout the paper.

3.1 Attribute Grammar for Tree Visitors

To represent tree structures and their visitors that contain a set

of computation rules over attributes, we introduce a tree visitor

language L𝑎 based on attribute grammar [26]. Figure 6 defines the

syntax of L𝑎 in an object-oriented style:

• A class (i.e., ⟨class⟩) represents the type(s) of a tree node.

• A node can refer to its child nodes via ⟨children⟩ block, and

each node also stores values of primitive fields Ð we call

these fields attributes.

• A ⟨rules⟩ block contains computation rules and each rule is a

⟨cstmt⟩ statement.

• The left-hand-side (LHS) of a statement specifies an access

path ⟨sel⟩ to an attribute that is computed by the expression

in the right-hand-side (RHS).

• An expression on the RHS can be: constants, binary expres-

sions, branches, aggregations, and function calls, etc.

• Each attribute can be assigned exactly once.

⟨interface⟩ ::= interface ⟨id ⟩ { (⟨tup⟩;)* }

⟨class⟩ ::= class ⟨tup⟩ { ⟨children⟩ ⟨rules⟩ }

⟨children⟩ ::= children { (⟨tup⟩;)* }

⟨rules⟩ ::= rules { (⟨cstmt ⟩;)* }

⟨tup⟩ ::= ⟨id ⟩:⟨id ⟩(,⟨id ⟩)*

⟨sel⟩ ::= ⟨id ⟩(.⟨id ⟩)?.⟨id ⟩

⟨expr ⟩ ::= ⟨const ⟩ | ⟨sel⟩ | f (⟨expr ⟩*)

| ⟨expr ⟩ ⟨op⟩ ⟨expr ⟩ | fold(⟨expr ⟩+)

| if ⟨expr ⟩ then ⟨expr ⟩ else ⟨expr ⟩

⟨cstmt ⟩ ::= ⟨sel⟩ := ⟨expr ⟩

⟨op⟩ ::= + | − | × | ÷ | ...

𝑓 ∈ functions ⟨𝑐𝑜𝑛𝑠𝑡 ⟩ ∈ constants ⟨𝑖𝑑 ⟩ ∈ identifiers

Figure 6: Syntax for attribute grammar L𝑎 .

⟨traversal⟩ ::= traversal ⟨id ⟩ { ⟨case⟩* }

⟨case⟩ ::= case ⟨id ⟩ { (⟨tstmt ⟩;)* }

⟨recur ⟩ ::= recur ⟨node⟩

⟨iterate⟩ ::= iterate { (⟨tstmt ⟩;)* }

⟨parallel⟩ ::= parallel { (⟨tstmt ⟩;)* }

⟨eval⟩ ::= eval ⟨cstmt ⟩

⟨tstmt ⟩ ::= 𝜄 | ⟨recur ⟩ | ⟨iterate⟩ | ⟨eval⟩

⟨𝑖𝑑 ⟩ ∈ identifiers ⟨𝑛𝑜𝑑𝑒 ⟩ ∈ nodes

Figure 7: Syntax for tree traversal language L𝑡 .

As a result, L𝑎 is specialized for modeling the behaviors of read-

ing and writing of attributes of the current node and its children,

which essentially describes the dependency relations between at-

tributes of nodes.

Example 3.1. The code snippet from Figure 3 declares the at-

tribute grammar for nodes of types Inner and Leaf, which share

the same set of attributes declared by the interface Box. Specifically:

• each Inner node has two children nx and fc that point to its

next sibling and first child respectively;

• a Leaf node does not have children.

Rules for computing the attributes vary across different classes. e.g.,

• attributes w and h of a Leaf node only depend on attributes

from itself,

• attribute w from an Inner node depends on the default width

of itself (i.e., self.w0) and the maximum width of its children

(i.e., fc.w1),

• attribute h from an Inner node depends on the default height

of itself (i.e., self.h0) and the summed height of its children

(i.e., fc.h1).

3.2 Language for Tree Traversals

To formally define a tree traversal, we first introduce domains

for different notations.

Syntax. Figure 7 summarizes the language L𝑡 for expressing

tree traversals. In particular, A traversal ⟨traversal⟩ is declared with

a list of ⟨case⟩ blocks. Each ⟨case⟩ block matches a node type and

contains statements of the following forms:

1033

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

• ⟨recur⟩ recursively visits a child of the current node,

• ⟨iterate⟩ iteratively visits every child of the current node,

• ⟨parallel⟩ in parallel visits every child of the current node2,

• ⟨eval⟩ evaluates an attribute computation rule, and

• a slot 𝜄 represents zero or one computation rule yet to be

determined3.

Domains. Our system contains the following domains:

• Each traversal operates over a set of trees denoted by E.

• Each tree contains a set of nodes (i.e., N).

• A time domain 𝑡 ∈ T enforces the order of different rules.

• An attribute grammar provides a list of attributes A that

uniquely determine their corresponding computation rules.

• Each traversal provides a list of slots (i.e., I) for holding com-

putation rules from the attribute grammar.

• Each node 𝑛 has a set of locations (i.e., L) that refer to its

corresponding attributes in runtime.

Definition 3.2. Traversal. Given a tree, a traversal defines a total

order relation ≺ over the set of all locations of the tree.

Example 3.3. A concrete post-order traversal (i.e., Figure 4(b)) on
the tree in Figure 2 yields the following total order of locations:

𝑛4 .w ≺ 𝑛4 .h ≺ 𝑛4 .w1 ≺ 𝑛4 .h1 ≺ 𝑛3 .w ≺ 𝑛3 .h ≺ 𝑛3 .w1 ≺ 𝑛3 .h1

≺𝑛1 .w ≺ 𝑛1 .h ≺ 𝑛1 .w1 ≺ 𝑛1 .h1 ≺ 𝑛2 .w ≺ 𝑛2 .h ≺ 𝑛2 .w1 ≺ 𝑛2 .h1

≺𝑛0 .w ≺ 𝑛0 .h ≺ 𝑛0 .w1 ≺ 𝑛0 .h1

where in every time step 𝑡 ∈ T one location is visited. Note that

different traversals may induce different orders.

A traversal is symbolic if it contains at least one slot 𝜄 and is

concrete otherwise.

Example 3.4. Figure 4(a) declares a symbolic and post-order tra-

versal over nodes of types Inner and Leaf. Figure 4(b) is an instanti-

ation of the previous symbolic traversal. In particular, the traversal

first computes the attributes for the leaves of type Leaf, and then

the attributes of the nodes of type Inner.

Note that the concrete post-order traversal preserves the read-

write dependencies induced by the attribute grammar in Figure 3.

On the contrary, a pre-order traversal would not be valid since it vi-

olates the read-write dependencies imposed by attributes including

w and h of a Inner node. We then define the tree traversal synthesis

problem as follows:

Definition 3.5. Tree Traversal Synthesis. Given an attribute

grammar L𝑎 and a symbolic traversal 𝑃𝑡 with holes, a tree traversal

synthesis problem is to induce a concrete traversal 𝑃𝑡 by complet-

ing the holes 𝜄 in 𝑃𝑡 with computation rules in L𝑎 , such that for

arbitrary instantiated trees from L𝑎 : 1) all attributes are computed,

and 2) all read-write dependencies are preserved.

Example 3.6. Given the attribute grammarL𝑎 in Figure 3 and the

symbolic traversal in Figure 4(a), Hecate synthesizes the concrete

traversal in Figure 4(b). Given arbitrary tree derived from Figure 2,

the synthesized traversal computes all attributes of the tree exactly

once and respects all read-write dependencies.

2If parallelism is impossible, Hecate falls back to ⟨iterate⟩.
3One can extends the semantics of 𝜄 to represent one or more rules.

As we show later, to bypass the challenge of complex SMT con-

straints that are generated by a faithful interpretation of a traversal’s

semantics, a scalable approach to solve the placement and resource

allocation problems is to use ILP to map the computation rules to

the available slots in the traversal [15, 36].

Definition 3.7. 0-1 Integer Linear Programming. Given coef-

ficients 𝑎, 𝑏 and 𝑐 , the 0-1 ILP problem is to solve for 𝑥 as follows:

min

∑

𝑖

𝑐𝑖𝑥𝑖 𝑠.𝑡 . ∀𝑎𝑖,𝑗 .
∑

𝑗

𝑎𝑖,𝑗𝑥 𝑗 ≤ 𝑏𝑖 ,

where all entries are integers and in particular 𝑥 𝑗 ∈ {0, 1}.

We obtain a set of ILP constraints that is easy to solve by ILP

solvers from domain-specific symbolic compilation via program

written in trace language, which is deferred to Section 5 for a

detailed discussion.

4 TREE TRAVERSAL SYNTHESIS

In this section, we formally introduce our synthesis framework

for tree traversals that is based on counterexample-guided induc-

tive synthesis (CEGIS). In what follows, we first give a high-level

overview of the synthesis framework, then we show how to reduce

the synthesis problem to a general-purpose symbolic compilation

problem based on Rosette. Finally, we briefly discuss its limitation.

4.1 System Overview

As shown in Figure 5, Hecate takes as inputs an attribute grammar

L𝑎 , a symbolic traversal with unknown slots in L𝑡 , and an initial

tree for validating the correctness of the traversal. The output

of Hecate is a concrete traversal that respects all the read-write

dependencies imposed by the attribute grammar.

Synthesis. Figure 8(a) sketches the core synthesis engine that is

built on top of Rosette [45], a hybrid symbolic compiler that com-

bines symbolic execution and bounded model checking to compute

compact constraints. In particular, the general-purpose interpreter

interpret for tree traversals takes as inputs a grammar grammar, a

traversal traversal, and a concrete tree tree. Following the total

order induced by traversal, the outermost loop of the interpreter

recursively visits each node in tree and its corresponding locations

loc (line 2). When evaluating a symbolic choice for a slot, sym-

bolic evaluation considers each alternative concrete rule (line 3-4),

generates the constraints stating that the dependencies are ready

and the target has not been computed (line 6-7), sets the target

attribute as ready, and updates the program state (line 8). The in-

terpreter behaves as a regular emulator when it runs with concrete

traversals and trees. For instance, running it with the post-order

traversal in Figure 4(b) and the example tree in Figure 2 will pass

all assertions and terminate normally. What is more interesting is

that given a symbolic traversal traversal with slots yet to be filled,

Rosette runs the interpreter with traversal and a concrete tree

tree under symbolic evaluation; this encodes all possible concrete

traversals that preserve the dependencies in tree, effectively lifting

the interpreter to be a synthesizer.

1034

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

1 (define (interpret grammar traversal tree)

2 (for ([loc (traversal grammar tree)])

3 (let* ([rule (get-rule loc)]

4 [node-attr (get-lhs rule loc)])

5 (for ([dep-attr (get-rhs rule loc)])

6 (assert (ready? dep-attr)))

7 (assert (not (ready? node-attr)))

8 (set-ready! node-attr))))

(a) general-purpose interpreter

1 (define (interpret grammar traversal tree)

2 (for ([loc (traversal grammar tree)])

3 (let* ([rule (get-rule loc)]

4 [node-attr (get-lhs rule loc)])

5 (for ([dep-attr (get-rhs rule loc)])

6 (read dep-attr))

7 (write node-attr))))

8

(b) domain-specific interpreter

Figure 8: Code snippets of general-purpose interpreter and

domain-specific interpreter.

Verification. To ensure that the synthesized traversal traversal

is not only correct on the initial example tree but also on all pos-

sible trees 4, we again leverage Rosette to build our verifier. In

particular, the core of the verifier is another interpreter that is

almost identical to the one in Figure 8(a). Now the inputs of the

interpreter include a concrete traversal traversal that needs to be

verified, as well as a symbolic tree 𝑡𝑟 that encodes the space of all

possible concrete examples up to depth 𝑘 . In that case, symbolically

evaluating 𝑡𝑟 on traversal yields a formula stating that tree is

correct on all instantiations of 𝑡𝑟 . If the formula is satisfiable, the

verifier then returns a counterexample to the synthesizer that will

look for another candidate. Similar to prior work in Neo [20] and

Bonsai [15], our symbolic tree 𝑡𝑟 is encoded as a bounded𝑚-ary

tree derived from the attribute grammar. We omit the details since

it is not the main contribution.

We call the interpreter in Figure 8(a) general-purpose symbolic

compilation. By nature, its encoding (general-purpose encoding)

establishes read-write dependencies across different execution time

steps.While general-purpose encoding is fairly intuitive and straight-

forward to implement, it may lead to complex constraints that are

difficult to solve.

4.2 General-Purpose Symbolic Compilation

In this section, we elaborate on the details behind general-purpose

symbolic compilation. Using the domains introduced in Section 3.2,

we first define a set of relational operators to formalize the general-

purpose symbolic compilation:

• Assignment. The assignment operator maps an attribute 𝑎 ∈

A and a slot 𝜄 ∈ I to a boolean variable inB, i.e.,𝜎 : A×I→ B.

Since each attribute𝑎 is uniquely computed by a computation

rule from the attribute grammar, predicate 𝜎 (𝑎, 𝜄) evaluates

to true iff the rule for computing attribute 𝑎 is scheduled at

slot 𝜄.

4Similar to prior work [15], we verify trees up to depth 𝑘 .

• Dereference. Recall that in Figure 6, each computation rule

for an attribute is composed of multiple access paths sel ap-

pearing in a statement. During tree traversal, the dereference

operator 𝜁 (𝑛, sel) returns the concrete location 𝑙 (i.e., N×A)

that access path sel of node 𝑛 points to.

• Ready Bit. The ready bit operator maps a node 𝑛 ∈ N, an

attribute 𝑎 ∈ A, and a time step 𝑡 ∈ T to a boolean variable

in B, i.e., 𝛿 : N×A×T→ B. Here, predicate 𝛿 (𝑛, 𝑎, 𝑡) returns

true iff the attribute 𝑎 of node 𝑛 is already computed (i.e.,

ready for being read by other computation rules) before time

step 𝑡 .

• Symbolic Choice. Recall that a symbolic traversal 𝑃𝑡 contains

at least one slot 𝜄 that represents at most one attribute compu-

tation yet to be scheduled. To handle this case, we introduce

a symbolic choice operator choose for non-deterministically

choosing an attribute (to compute) from a list of available at-

tributesA. For instance, (choose [Inner.h, Inner.w, none])

returns one of the attributes from the list.

Now, during the general-purpose symbolic compilation in Fig-

ure 8(a), the interpreter executes statements in traversal trav and

dynamically inserts assertions (line 6-7) to state the correctness

of every single computation rule. In particular, the correctness en-

forces read-write dependency using the ready bit operator 𝛿 . There-

fore, for a statement with chosen attribute, e.g., eval self.h at slot

𝜄2 of node 𝑛1, Rosette compiles it into the following constraints:

𝛿 (𝜁 (𝑛1, self.h0), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, fc.h1), 𝑡) ∧ ¬𝛿 (𝜁 (𝑛1, self.h), 𝑡)

where 𝑡 is the current time step and rule self.h := max(self.h0,

fc.h1) (line 13 in Figure 3) is used to compute attribute self.h

for node 𝑛1 of type Inner. Here, the above constraints state two

properties about the read-write dependencies: 1) attributes of nodes

(i.e., self.h0 for 𝑛1 and fc.h1 for 𝑛3) should be ready before they

are read, and 2) the attribute of a node (i.e., self.h for 𝑛1) should

not be ready until it is written.

The interpreter starts by executing a slot statement 𝜄 in the sym-

bolic traversal. In that case, each 𝜄 is dynamically replaced by a

statement that non-deterministically chooses an available attribute

𝑎𝑖 to schedule 5: eval (choose [a1, ..., an]). After that, Rosette

symbolically evaluates the above statement and compiles it into

a formula stating all possible cases where each case is guarded

by the conjunction of assignment operators 𝜎 that represent the

cumulative choices so far.

Example 4.1. For instance, at time step 𝑡 , when the interpreter

executes slot 𝜄2, i.e. line 7 in Figure 4(a), on Inner node 𝑛1 in Fig-

ure 10(a), it can choose one of the five options from none, Inner.w1,

Inner.w, Inner.h1 and Inner.h according to its attribute grammar

in Figure 10(b):

eval (choose S)

where

S : [none, Inner.w1, Inner.w, Inner.h1, Inner.h]

5We omit the empty case for simplicity.

1035

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

which is further transformed into the following formula:

(𝜎 (none, 𝜄2) =⇒ 𝑡𝑟𝑢𝑒)

∨ (𝜎 (Inner.w1, 𝜄2) =⇒ 𝛿 (𝜁 (𝑛1, self.w), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, nx.w1), 𝑡)

∧¬𝛿 (𝜁 (𝑛1, self.w1), 𝑡))

∨ (𝜎 (Inner.w, 𝜄2) =⇒ 𝛿 (𝜁 (𝑛1, self.w0), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, fc.w1), 𝑡)

∧¬𝛿 (𝜁 (𝑛1, self.w), 𝑡))

∨ (𝜎 (Inner.h1, 𝜄2) =⇒ 𝛿 (𝜁 (𝑛1, self.h), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, nx.h1), 𝑡)

∧¬𝛿 (𝜁 (𝑛1, self.h1), 𝑡))

∨ (𝜎 (Inner.h, 𝜄2) =⇒ 𝛿 (𝜁 (𝑛1, self.h0), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, fc.h1), 𝑡)

∧¬𝛿 (𝜁 (𝑛1, self.h), 𝑡))

where 𝜎(Inner.h,𝜄2) evaluates to true iff we decide to compute

attribute Inner.h at slot 𝜄2 using its corresponding rule self.h :=

max(self.h0, fc.h1) from class Inner. Here in particular, ev-

ery assignment predicate 𝜎 implies a conjunction of three ready

bit predicates 𝛿 asserting corresponding properties of read-write

dependencies. For example, the last clause

𝜎 (Inner.h, 𝜄2) =⇒ 𝛿 (𝜁 (𝑛1, self.h0), 𝑡) ∧ 𝛿 (𝜁 (𝑛1, fc.h1), 𝑡)

∧¬𝛿 (𝜁 (𝑛1, self.h), 𝑡)

indicates that in order to schedule rule Inner.h at slot 𝜄2,

• self.h0 and fc.h1 should be ready before time step 𝑡 , and

• self.h should not be scheduled before time step 𝑡 .

In addition to correctness constraints, we also enforce auxiliary
constraints to induce valid traversals. For instance, the following
constraint requires every slot be filled with at most one rule:

∀𝜄.(
∨

𝑎0

∧

𝑎≠𝑎0

¬𝜎 (𝑎, 𝜄) ∧ 𝜎 (𝑎0, 𝜄)) ∨ (
∧

𝑎

¬𝜎 (𝑎, 𝜄)) .

And the following requires every rule be used by only one slot:

∀𝑎.
∨

𝜄0

∧

𝜄≠𝜄0

¬𝜎 (𝑎, 𝜄) ∧ 𝜎 (𝑎, 𝜄0) .

Performance Analysis. While it is intuitive and straightforward to

build a tree traversal synthesizer using general-purpose encoding,

it suffers from path explosion by faithfully following the execution

of a traversal, even with the effective state-merging and pruning

strategy from Rosette. Figure 9 shows how the number of sym-

bolic state grows as time goes by. Consider a tree of 𝑛 nodes with an

average of 𝑘 slots per node, the general-purpose symbolic compila-

tion will generate constraints based on a chain of length 𝑛 · 𝑘 with

dependencies between choices made in a recursive way, i.e. nested

choose operations. Assuming that every slot has a candidate set

of 𝑞 rules to fill in on average, the total number of symbolic states

after compilation can be up to 𝑞𝑛 ·𝑘 . As shown in our evaluations,

the general-purpose symbolic compilation creates constraints that

take a long time to solve.

5 DOMAIN-SPECIFIC SYMBOLIC COMPILATION

As discussed in Section 4, a general-purpose symbolic compila-

tion faithfully follows the execution of a traversal across different

execution time steps, which leads to constraints that are hard to

solve. To mitigate this problem, we propose a domain-specific trace

language, which projects the complex dependencies from time do-

main to relational domain and yields easy-to-solve constraints. In

what follows, we first introduce the trace language L𝑟 , and then

𝜎(Leaf. h1, 𝜄!)

6

1

26

806

3,206

10,406

#
 t

o
ta

l
sy

m
b

o
li

c
 s

ta
te

s

start

self.h := max(self.h0, fc.h1)

𝑛!, 𝜄!

𝑛!, 𝜄"

…

𝑛#, 𝜄!

𝑛#, 𝜄"

𝑛$, 𝜄$

chain

𝜅 𝜅

(assume 𝜎(Inner. h, 𝜄%)

(read 𝒏𝟏. 𝒉𝟎) (read 𝒏𝟑. 𝒉𝟏) (write 𝒏𝟏. 𝒉))
GENTRACE

(choose [none, Inner.w1 Inner.w, Inner.h1, Inner.h])

...
time

1

2

.

5

6

0

𝜅 n! . h, 11 = 𝜎(Inner. h, 𝜄")

constraints

history update

𝜅

𝜎 Inner. h, 𝜄" ⇒

𝜎(Inner. h0, 𝜄#) ⊕ 𝜎(Inner. h0, 𝜄!)

𝜎 Inner. h, 𝜄" ⇒

𝜎(Leaf. h1, 𝜄$) ⊕ 𝜎(Leaf. h1, 𝜄%)

⊕ 𝜎(Leaf. h1, 𝜄&) ⊕ 𝜎(Leaf. h1, 𝜄')

𝑛#, 𝜄<7

𝑛#, 𝜄=8

𝑛$, 𝜄>9

10

….

𝑛$, 𝜄%11

𝜎(Leaf. h1, 𝜄")

𝜎(Leaf. h1, 𝜄<)

𝜎(Leaf. h1, 𝜄=)𝜎(Inner. h0, 𝜄$)

𝜎(Inner. h0, 𝜄>)

𝜎(Inner. h, 𝜄%)

𝑛𝑜𝑛𝑒

𝑛!. 𝑤1 𝑛!. 𝑤 𝑛!. ℎ1 𝑛!. ℎ

𝑛!. 𝑤1 𝑛!. 𝑤 𝑛!. ℎ1 𝑛!. ℎ

…

…

…

…

𝑛𝑜𝑛𝑒

𝑛#. 𝑤1 𝑛#. 𝑤 𝑛#. ℎ1 𝑛#. ℎ

𝑛#. 𝑤1 𝑛#. 𝑤 𝑛#. ℎ1 𝑛#. ℎ

𝑛𝑜𝑛𝑒

𝑛$. 𝑤1 𝑛$. 𝑤 𝑛$. ℎ1 𝑛$. ℎ

𝑛$. 𝑤1 𝑛$. 𝑤 𝑛$. ℎ1 𝑛$. ℎ …

…

94,406

374,406

1,214,406

Figure 9: General-purpose (left) v.s. domain-specific (right)

symbolic compilations.

𝒏𝟏 𝒏𝟐

𝒏𝟎

𝒏𝟑 𝒏𝟒

fc

nx

fc

nx

Leaf node

Inner node

var access path

(a) example tree

5 class Inner: Box{

6 children {

7 nx : Optional[Box];

8 fc : Optional[Box];

9 }

10 rules {

11 self.w := max(self.w0, fc.w1);

12 self.w1 := max(self.w, nx.w1);

13 self.h := max(self.h0, fc.h1);

14 self.h1 := self.h + nx.h1;

15 }

16 }

(b) visitor program snippet

Figure 10: The motivating example tree as in Section 2 and

its corresponding visitor program snippet.

show how to obtain ILP constraints via domain-specific symbolic

compilation.

5.1 A Trace Language for Tree Traversals

As shown in Figure 8(b), thanks to Rosette, the skeleton of

domain-specific interpreter for synthesizing tree traversals can

be obtained with a minor modification over the general-purpose

version: upon executing a statement in traversal traversal, instead

of directly adding its corresponding assertions, we first translate

the statement into another program in trace language L𝑟 , and then

leverage Rosette to lift the execution of the new trace program to

constraints that can be modeled as an integer linear programming

(ILP) problem.

1036

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

Table 1: Operations of the symbolic trace language L𝑟 .

Operation Description

(choose [𝑎1, ...𝑎𝑛]) choose one from the attributes

(alloc) returns a fresh concrete location

(read 𝑛.𝑎) logs a read from 𝑛.𝑎

(write 𝑛.𝑎) logs a write to 𝑛.𝑎

The syntax and semantics of L𝑟 are summarized in Table 1.

Intuitively, L𝑟 understands dependency relations carried through

attributes on nodes with fully abstract contents. In particular:

• (read 𝑛.𝑎) logs the read action of attribute 𝑎 on node. 𝑛;

• (write 𝑛.𝑎) logs the write action of attribute 𝑎 on node 𝑛.

• (choose [𝑎1, ..., 𝑎𝑛]) non-deterministically selects an at-

tribute 𝑎𝑖 to compute.

For the sake of simplicity, we use the built-in assume function in

Rosette to explicitly enumerate each option of symbolic choices

under different assumptions.

During the execution of the domain-specific interpreter (Fig-

ure 8(b)) at line 6, Hecate invokes a syntax-directed transpilation

procedure to generate the corresponding trace program, which

captures the dependency relations to ensure the correctness of tree

traversals, and provides succinct statements that eventually lead to

efficient constraints (Section 5.2).

Example 5.1. Following Example 4.1, suppose we are in the sym-
bolic traversal (i.e., Figure 4(a)) at slot 𝜄3 and the current node is 𝑛0
in Figure 10(a). And the synthesizer decides to select a rule self.h

:= max(self.h0, fc.h1) from the visitor program in Figure 10(b)
to compute the Inner.h attribute in slot 𝜄3, then a syntax-directed
transpilation procedure is invoked to generate the following trace
program:

(assume 𝜎 (Inner.h, 𝜄3) (read 𝑛0 .h0) (read 𝑛1 .h1) (write 𝑛0 .h)) .

Semantically the above trace program states that in order to com-

pute Inner.h at slot 𝜄3, two attributes (i.e., 𝑛0 .h0 and 𝑛1 .h1) should

first be read and another attribute (i.e., 𝑛0 .h) should then be writ-

ten. The trace program records read-write dependencies in a more

compact way without introducing time steps.

5.2 Symbolic Compilation of Trace Program

Even if we obtain a trace program 𝑃𝑟 using the procedure dis-

cussed in Section 5.1, the trace program itself does not mitigate

the path explosion problem because similar to the general-purpose

encoding, the symbolic choice statements in the trace program still

encode path conditions at each time step. To address this challenge,

we discuss how our domain-specific compilation further projects

the executions of the trace program into compact constraints that

can be solved by efficient ILP solvers [24].

Dependency Constraints. We first introduce a dependency opera-

tor 𝜅 that takes as inputs a location 𝑙 ∈ N × A, a time step 𝑡 ∈ T,

and returns a boolean variable 𝜎 that specifies all possible slots in

which the attribute 𝑎 of location 𝑙 was computed. In other words,

𝜅 encodes the dependency between locations (i.e., read) and their

corresponding attributes (i.e., write).

We then illustrate the relationship between the trace program
and the dependency operator 𝜅. In particular, for a write instruc-
tion (write 𝑛.𝑎) at time step 𝑡 guarded by 𝜎 (𝑎, 𝜄), the dependency
operator 𝜅 gets updated by:

𝜅 (𝑛.𝑎, 𝑡) ← 𝜎 (𝑎, 𝜄),

where attribute 𝑎 is written at time step 𝑡 if 𝜎 (𝑎, 𝜄) evaluates to 1

(i.e., true).
For a read instruction (read 𝑛.𝑎) at time step 𝑡 guarded by 𝜎 (𝑎, 𝜄),

if 𝜎 (𝑎, 𝜄) evaluates to true, then it implies that attribute 𝑎 must be
written somewhere before time step 𝑡 . Formally speaking, we have
constraint:

𝜎 (𝑎, 𝜄) =⇒ (∃ 𝑡0 .(𝑡0 < 𝑡) ∧ 𝜅 (𝑛.𝑎, 𝑡0)),

which can be easily translated into its equivalent ILP constraint 6:

𝜎 (𝑎, 𝜄) ≤
∑

𝑡0<𝑡

𝜅 [𝑛.𝑎, 𝑡0], (read constraint)

Example 5.2. Following Example 4.1 but in domain-specific sym-
bolic compilation, as shown in Figure 9, suppose we want to sched-
ule self.h := max(self.h0, fc.h1) at slot 𝜄2 of node 𝑛1, which
corresponds to the following trace program:

(assume 𝜎 (Inner.h, 𝜄2) (read 𝑛1 .h0) (read 𝑛3 .h1) (write 𝑛1 .h)) .

The domain-specific encoding compiles the above trace program
into the following ILP constraints:

𝜎 (Inner.h, 𝜄2) ≤
∑

𝑡0<𝑡

𝜅 [𝑛1 .h0, 𝑡0]

= 𝜎 (Inner.h0, 𝜄0) + 𝜎 (Inner.h0, 𝜄1), (read for 𝑛1 .h0)

𝜎 (Inner.h, 𝜄2) ≤
∑

𝑡0<𝑡

𝜅 [𝑛3 .h1, 𝑡0]

= 𝜎 (Leaf.h1, 𝜄4) + 𝜎 (Leaf.h1, 𝜄5)

+ 𝜎 (Leaf.h1, 𝜄6) + 𝜎 (Leaf.h1, 𝜄7), (read for 𝑛3 .h1)

where 𝑡 corresponds to the time step when visiting 𝜄2 of node 𝑛1.

According to Definition 3.2, since a traversal defines a total order

relation over all locations of a tree, we can map the location that

is currently being evaluated to a certain time step 𝑡 , and generate

constraints that require all the dependencies of this location are

ready before time step 𝑡 . This is done by 𝜅 in the example. Then,

we again utilize the mapping to cancel the time step variables in

the constraints by mapping them back to potential locations, thus

resulting in a more compact constraint system.

Validity Constraints. Similar to the general-purpose encoding in

Section 4.2, we also impose extra constraints to ensure the validity

of the traversals.

• For every slot 𝜄, at most one rule can be filled in:

∀𝜄.
∑

𝑎

𝜎 (𝑎, 𝜄) ≤ 1, (slot constraint)

• Every rule 𝑎 is used by exact one slot 𝜄:

∀𝑎.
∑

𝜄

𝜎 (𝑎, 𝜄) = 1. (rule constraint)

6Interchangeably, we use the same domain notation B to denote the boolean domain
and 0-1 integer domain for general-purpose and domain-specific symbolic encodings,
respectively.

1037

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Performance Analysis. To understand why the domain-specific

compilation generates better constraints than the general-purpose

version, we use Figure 9 to show a comparison between two strate-

gies. Here we use the total number of symbolic states (i.e., the input

space of all relational operators that introduce symbolic states) to

approximate the complexity of constraints. Both the assignment op-

erator 𝜎 : A× I→ B and the readiness operator 𝛿 : N×A×T→ B

introduce symbolic states. Even though the size of the symbolic

states generated by the readiness operator can grow as the size of

the tree 𝑛, the number of attributes 𝑞, and the number of slots 𝑘

increase, it’s still bounded by a polynomial growth. In particular,

the domain-specific encoding generates a maximum of (1+𝑛2) ·𝑞 ·𝑘

symbolic states, which is more compact and less complex than the

exponential number generated by general-purpose encoding.

6 EVALUATION

In this section, we describe the results of the experimental eval-

uation, which is designed to answer the following key research

questions:

(1) (Expressiveness) Is Hecate’s tree (visitor/traversal/trace)

language expressive enough? In particular, can it express

prevailing tree traversal synthesis problems and solve them?

(2) (Performance) What is the performance of synthesized tra-

versals, compared to those generated by state-of-the-art tra-

versal synthesizers?

(3) (Flexibility) Can Hecate be extended to explore traversals

of different design choices?

(4) (Efficiency) What is the benefit of the domain-specific en-

coding compared to general-purpose encoding?

For all experiments, Hecate requires user-provided attribute

grammar, a symbolic traversal and an initial example tree as input,

and outputs a concrete traversal in tree traversal language L𝑡 .

6.1 Comparison against Grafter

We first compareHecate against Grafter [41], the state-of-the-art

tree traversal synthesizer based on static dependence analysis. In

particular, Grafter builds access automata that summarises de-

pendency relations for tree visitors, and synthesizes tree traversals

using a deterministic algorithm. We adapt the original benchmark

set from Grafter, which contains five representative tree traversal

synthesis problems from real-world applications. Since Grafter

benchmarks are written in C++, we also implement a code genera-

tor for converting concrete traversals synthesized by Hecate into

corresponding C++ versions through syntax-directed translation.

To study the benefit of domain-specific encoding discussed in Sec-

tion 5, we also implement general-purpose encoding discussed in

Section 4.2, which we denote as HecateG.

Efficiency and Expressiveness. Table 2 shows the results of the

comparison. In particular, Hecate supports all 5 benchmarks from

Grafter and successfully synthesizes the correct solutions (i.e.,

traversals that are semantically equivalent to the ones generated

by Grafter.) within 5.9 seconds on average. Specifically, Hecate

yields an averaged speed-up of 3.1× compared to Hecate
G and

8.0× compared to Grafter. The evaluation shows that Hecate’s

tree language is expressive to support a variety of tree traversal

Table 2: Comparison between Grafter, Hecate and Hecate
G

(with general-purpose encoding). The table shows total syn-

thesis time (synthesis + verification) in second.

Benchmark # of Rules Grafter Hecate Hecate
G

BinaryTree 16 2.6 1.1 3.2

FMM 14 7.6 1.0 1.6

Piecewise 12 12.6 2.1 3.1

AST 136 151.7 20.6 73.4

RenderTree 50 62.0 4.1 10.1

applications. Furthermore. the comparison between Hecate and

Hecate
G also demonstrates the benefits of domain-specific encod-

ing.

Performance. To evaluate the performance of the synthesized

traversals, we directly adopt the workload from Grafter. Since

our symbolic traversals are written in a way to łfuse" tree vis-

itors whenever possible, like Grafter, the performance of our

synthesized traversals are almost identical to the ones generated by

Grafter. However, unlike Grafter that uses a deterministic algo-

rithm for generating one unique solution for each benchmark, the

tree language enables Hecate to flexibly explore various traversals

of different design choices, some of which lead to dramatic perfor-

mance speed-up. In what follows, we elaborate on the details using

a case study from one of Grafter’s benchmarks: RenderTree. 7

Usability. To further minimize user effort, we implement a vari-

antHecateA that incorporates an auto-tuner that can automatically

search for useful symbolic traversals during synthesis. In particu-

lar, the user only has to provide attribute grammar, and Hecate
A

will construct the example trees and initiate an outer loop that

searches for a symbolic traversal that ensures correctness of its

corresponding synthesized concrete traversal. Our experimental

results indicate HecateA can solve four Grafter benchmarks as

fast as Hecate; for the AST benchmark with complex symbolic

traversals, it takes HecateA more than 30mins to find a solution.

We show that it is possible to get rid of more manual inputs for

Hecate using a simple auto-tuner.

6.2 Case Study: RenderTree

In the RenderTree benchmark, a document tree consists of a list

of pages containing nested horizontal and vertical containers with

concrete elements as leaf nodes (e.g., text boxes, images, and item-

ized lists). A total of five rendering passes compute various visual

attributes: (1) resolving flexible widths, (2) resolving relative widths,

(3) computing heights, (4) propagating font styles, and (5) finaliz-

ing positions of elements. Each pass potentially depends on the

attributes computed by previous passes.

Unlike Grafter, which only generates one unique traversal

that fuses tree visitors whenever possible, Hecate offers a number

of design choices. For instance, tree nodes frequently visit their

children, which can be modeled using either linked lists or vec-

tors. Moreover, when the children have no dependencies between

themselves, the user may parallelize the computations using the

7See Appendix A for a detailed case study for another benchmark: AST.

1038

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

Tree Size

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

0.00

0.25

0.50

0.75

1.00

1.00E+06 1.00E+07 1.00E+08 1.00E+09

Gʀᴀғᴛᴇʀ Hᴇᴄᴀᴛᴇ Hᴇᴄᴀᴛᴇ Hᴇᴄᴀᴛᴇ 𝕍𝕃 ℙ

Figure 11: Running time of fused traversals compared to the

unfused baseline.

1 class Inner: Box{

2 children {

3 cs: [Box]; // vector of 0 or more elements

4 }

5 rules {

6 self.w := fold(max, self.w0, cs.w);

7 self.h1 := fold(+, 0, cs.h);

8 self.h := max(self.h0, self.h1);

9 }

10 }

Figure 12: Class definitions in Hecate for rendering tree ex-

ample, optimized with vector data structure. Only key refac-

torings are listed.

⟨parallel⟩ construct in the symbolic traversal. Then, Hecate can

verify the absence of inter-dependency between children and gener-

ate a parallel scheduling over the list of children. Here, we evaluate

the performance of the following variants: 1). HecateL: sequential

linked-list-based traversal 2). HecateV: sequential vector-based

traversal 3). HecateP: parallel vector-based traversal. Figure 11

summarizes the comparison with Grafter. Here, each line cor-

responds to one of the variants. The 𝑥-axis shows the tree size

and the workload is directly adopted from the Grafter paper. The

𝑦-axis shows normalized running time over the unfused baseline,

averaged over 10 trials.

Linked-List-Based Traversal. Due to limitation ofGrafter’s static

analysis, it only supports linked list for modeling variable-length

arrays of children. The HecateL variant uses the same linked list

data structure, and is able to synthesize a schedule that is semanti-

cally equivalent toGrafter’s fused traversal. Specifically,HecateL

achieves competitive performance against Grafter, where both

candidates get more than 50% running time reduction over the

unfused traversal.

Sequential Vector-Based Traversal. The traversals in real-world

compilers like Clang [37] leverage vectors for iterating children.

Because the vector-based layout typically leads to better cache local-

ity and reduces the number of dynamic dispatching due to virtual

functions, it is crucial for a traversal synthesizer to explore different

design choices. However, Grafter does not support vector-based

representation due to limitation in its static analysis. On the other

1 traversal layout {

2 case Inner{

3 iterate cs {

4 recur cs;

5 𝜄0;

6 𝜄1;

7 }

8 𝜄2;

9 }

10 case Leaf{...}

11 }

(a) symbolic

1 traversal layout {

2 case Inner{

3 iterate cs {

4 recur cs;

5 eval self.h1;

6 eval self.w;

7 }

8 eval self.h;

9 }

10 case Leaf{...}

11 }

(b) concrete

Figure 13: Symbolic and concrete tree traversals for render-

ing tree example, optimizedwith vector data structure. Only

key refactorings are listed.

hand, as shown in Figure 12 and Figure 13, it only takes HecateVa

few lines of changes to refactor a linked-list-based traversal to its

vector-based version. In particular, HecateV achieves around 70%

running time reduction and almost 40% speed-up over Grafter’s

fused traversal.

Parallel Vector-Based Traversal. As Grafter tacitly assumes that

fusion opportunities should be exploited whenever possible, it’s

designed to reduce the number of tree node visits. This heuristic,

despite being effective in some scenarios, may prevent further op-

timizations and lead to sub-optimal traversals in terms of overall

running time.

Consider the fused example shown in Figure 14(b): the fused loop

iterates over the children to call a traversal function c->fusedCalc()

before updating the runningmaximum for certain values. Assuming

that each c->fusedCalc() is independent from each other, we can

łde-fusež the for loop into two: as shown in Figure 14(c) the first

loop is decomposed into parallel traversals, and the second loop

updates the running maximum in a sequential fashion. Although

the łde-fusedž traversal yields a higher number of node visits, it can

benefit from parallel execution if the cost of children traversal calls

far outweighs the cost of the sequential second visit. This example

shows how unconditionally fusing computations might prevent

fine-grained optimizations.

As shown in Figure 11, as the tree size grows, the speed-up

brought by the parallel variant HecatePgradually overcomes its

overhead, bringing an additional 23% improvement over the se-

quential vector-based variant HecateV.

The evaluation shows that, with minimal effort, Hecate can

effectively explore traversals of different design choices.

6.3 Synthesizing Layout Engine in FTL

To show the advantages of our domain-specific encoding, we com-

pare Hecate against FTL [32], a synthesizer specialized for layout

engines. In particular, FTL introduces a Prolog-style declarative lan-

guage for expressing partial schedules with holes. After that, FTL

devises a sophisticated synthesis algorithm that leverages Prolog’s

unification algorithm for effectively generating the schedule as a

composition of parallel tree traversals.

Benchmarks. Since FTL is not actively maintained anymore, we

can only run it on three variants of attribute grammars (i.e., CSS

1039

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

1 class Inner: public Box{

2 public:

3 vector<Box*> cs;

4 }

5 void Inner::calcWidth() {

6 w = w0;

7 for (auto c : cs) {

8 c->calcWidth();

9 w = max(w, c->w);

10 }

11 }

12 void Inner::calcHeight() {

13 h1 = 0;

14 for (auto c : cs) {

15 c->calcHeight();

16 h1 += c->h;

17 }

18 h = max(h0, h1);

19 }

(a) unfused version

1 /* class def same as unfused

2 *

3 *

4 */

5 void Inner::fusedCalc() {

6 w = w0;

7 h1 = 0;

8 for (auto c : cs) {

9 c->fusedCalc();

10 w = max(w, c->w);

11 h1 += c->h;

12 }

13 h = max(h0, h1);

14 }

15

16

17

18

19

(b) fused version

1 /* class def same as unfused */

2 void Inner::fusedCalc() {

3 w = w0;

4 h1 = 0;

5 // parallel

6 for (auto c : cs) {

7 c->fusedCalc();

8 }

9 // sequential

10 for (auto c : cs) {

11 w = max(w, c->w);

12 h1 += c->h;

13 }

14 h = max(h0, h1);

15 }

16

(c) "de-fused" version

Figure 14: Pseudo-code class definitions (unfused, fused and

"de-fused" versions) for rendering tree example, optimized

with vector data structure. Only key refactorings are listed.

Name # of Rules

CSS-float 192

CSS-margin 178

CSS-full 244

CSS-float CSS-margin CSS-full
0

50

100

150

200

250

R
u
n
n
in
g
ti
m
e
(s
)

Hecate FTL

Figure 15: Comparison against FTL: benchmark statistics

(left) and results (right).

rules) that are not supported by Grafter: 1) CSS-float represents

the basic CSS rules together with float rules [6, 8, 10], 2) CSS-margin

denotes the basic CSS rules together with rules for margin col-

lapse [5, 7, 9], and 3) CSS-full is the superset of the previous two

and it incorporates the most challenging CSS features such as ab-

solute position, margin collapse, float, and others. Figure 15(left)

summaries the statistics of the attribute grammars in terms of num-

ber of rules.

Performance. Figure 15(right) shows the results of the compari-

son and it takes Hecate only a fraction of time in FTL. Specifically,

for the CSS-float grammar, it takes FTL 189 seconds to synthesize

the traversal while it only takesHecate 39 seconds to finish. As the

number of rules grows in CSS-full, both tools take a bit longer time,

but Hecate is still 5X faster than FTL. To confirm the effectiveness

of our domain-specific encoding, we run the general-purpose encod-

ing HecateG on all three benchmarks. HecateG can not terminate

within 30 mins.

This evaluation shows that Hecate can be extended to compute

complex CSS semantics supported by real-world layout engines

and the domain specific encoding plays a crucial on scaling the tool

on those complex benchmarks.

7 RELATED WORK

The closest analog to Hecate in the existing literature is FTL [32].

Like Hecate, FTL synthesizes schedules for browser layout en-

gines; unlike Hecate, FTL translates the layout semantics to a

Prolog program, and uses the Prolog kernel to search for sched-

ules. Also unlike Hecate, FTL is specialized to a particular solver,

constraint encoding, attribute grammar language, and schedule lan-

guage; Hecate is considerably more flexible, and its trace language

allows it to scale to larger and more complex attribute grammars.

Grafter is another synthesizer for tree traversals. UnlikeHecate,

Grafter is based on static analysis, where it generates automata

that captures the dependencies indicated between statements and

invokes a deterministic algorithm to rewrite and fuse traversals

into more compact ones, thus synthesizing new traversals. While

Grafter is fast, extending it to new specifications may require

extra expert knowledge to devise new tree fusion theories.

Several authors have produced formalizations of browser lay-

out like those used by Hecate to define the layout semantics. Be-

sides those introduced by FTL, Cassius [35] formalizes a subset

of browser layout in linear real arithmetic in order to synthesize

CSS from examples using an SMT solver, and VizAssert [34] ex-

tends that formalization with finitization reductions to support a

large subset of the CSS standard, including floating layout, which is

widely used in modern web pages but is tricky even for experts to

reason about. The Cornipickle [22] project, meanwhile, used first-

order modal logic to define visual proproperties of specific web

pages. VizAssert later adapted Cornipickle’s logic to SMT reason-

ing. Besides web page layout in particular, there is a rich history of

work on constraint-based systems for specifying and synthesizing

layouts [1, 4, 23, 44, 48, 52] and on domain-specific languages for

describing structured graphics [51] and visual manipulations [17].

Tools for layout problems in web pages form a rich and dynamic

topic in the software engineering literature [3, 28ś30, 49, 50]. Tools

to detect parts of a web page that render differently in different

browsers [16, 31, 39] are a large and important subclass of these

tools. While these tools are aimed for web page developers (unlike

Hecate, which may be used by browser developers), their number

demonstrates the challenges that layout bugs impose on practi-

tioners and the importance of the problems Hecate addresses. In

fact, practitioners commonly test their web pages against specific

instances of browsers and operating systems by loading pages in

virtual machine instances [11ś13]. The manual inspection that this

easy-to-use and widely adopted testing approach requires could

be reduced if better tooling reduces the frequency or severity of

layout bugs.

Many attribute grammar formalisms [26] assume dynamic sched-

uling, in contrast to the fully static scheduling presented here. For

a large class of attribute grammars, the problem of scheduling an

1040

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Yanju Chen, Junrui Liu, Yu Feng, Rastislav Bodik

attribute grammar onto a sequence of traversals is known to be

NP-hard [19], though polynomial-time scheduling algorithms for

restricted classes of grammars exist [32]. However, these restricted

classes have not been classified or well-studied.

Constraint solving based on satisfiability modulo theories [33]

has become a powerful tool for program analysis as practical, high-

performance solvers have become available [2, 18, 21]. Solver-based

verification and synthesis tools have a long and rich history in

programming languages community [27, 42, 43]. Traditional solver-

aided tools use a custom constraint solver or manually translate

problems into constraints for a specific existing solver. Solver-aided

domain-specific languages [45, 47] instead automatically generate

solver constraints based on symbolic execution and custom lan-

guage extensions. For example, Rosette [46] uses Racket’s meta-

programming features to provide a high-level interface to several

solvers. Hecate is build atop Rosette, but uses its trace language

to abstract over the low-level features presented in generic Rosette

constraints and significantly improves runtime.

8 CONCLUSION

We proposeHecate, a novel framework for synthesizing tree traver-

sals. The core of Hecate is a domain-specific symbolic compilation

strategy for tree traversal synthesis that maintains the engineering

advantages of solver-aided language, yet achieves better perfor-

mance. The evaluation shows that Hecate’s tree language is ex-

pressive as it supports traversals from all Grafter benchmarks and

complex features in layout engines. Hecate’s domain-specific sym-

bolic compilation is efficient as it achieves 3× speed-up compared

to general-purpose symbolic compilation. Finally, Our case analy-

sis shows that Hecate can explore traversals of different design

choices with simple modifications.

ACKNOWLEDGMENTS

This work has been supported in part by the ACI OACś1535191,

FMitF CCF-1918027, OIA-1936731, SaTC-1908494, the Intel and NSF

joint research center for Computer Assisted Programming for Het-

erogeneous Architectures (CAPA NSF CCF-1723352), the CONIX

Research Center, one of six centers in JUMP, a Semiconductor Re-

search Corporation (SRC) program sponsored by DARPA CMU

1042741-394324 AM01, grants from DARPA FA8750ś14śCś0011

and DARPA FA8750ś16ś2ś0032, the Google faculty award, as well

as gifts from Adobe, Facebook, Google, Intel, and Qualcomm.

A CASE STUDY: AST

Compilers routinely traverse abstract syntax trees (ASTs) to per-

form program transformation and validation. The AST benchmark

models a simple imperative language with variable assignments,

arithmetic expressions, decrement and increment statements, con-

ditional statements, and functions. The benchmark further imple-

ments a total of six de-sugaring and optimization passes: 1) de-

sugaring decrement statements, 2) de-sugaring increment state-

ments, 3) constant propagation, 4) replacement of variable refer-

ences to constants, 5) constant folding, and 6) elimination of un-

reachable branches.

Tree Size

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

0.0

0.5

1.0

1.5

1.00E+04 1.00E+05 1.00E+06 1.00E+07

Gʀᴀғᴛᴇʀ Hᴇᴄᴀᴛᴇ Hᴇᴄᴀᴛᴇ Hᴇᴄᴀᴛᴇ

Figure 16: Running time of fused traversals compared to the

unfused baseline.

Similar to the RenderTree benchmark, we evaluate the perfor-

mance of three variants of Hecate: 1). HecateL: sequential linked-

list-based traversal 2). HecateV: sequential vector-based traversal

3). HecateP: parallel vector-based traversal. Figure 16 summarizes

the comparison with Grafter. Each line corresponds to one of the

variants. The 𝑥-axis shows the tree size, while the 𝑦-axis shows

normalized running time over the unfused baseline, averaged over

10 trials.

Overall, the linked-list based traversalHecateL achieves around

50% running time reduction compared to unfused baseline, which

is similar to Grafter fused traversal. However, the choice of linked

lists for representing lists of statements is not so much a necessity as

a limitation from Grafter’s static analysis. HecateV in contrast,

lets us replace the underlying data structure with vectors with

minimal code modification, leading to a further 10% reduction in

running time. Furthermore, HecatePis able to take advantage of

the data-independency between optimization passes on different

AST functions. Although there is ineivitable overhead when the

parallel schedules synthesized byHecatePare evaluated on smaller

trees, the performance gains gradually overcome the overhead, and

result in over 75% running time reduction over the unfused baseline.

REFERENCES
[1] Greg J. Badros, Alan Borning, KimMarriott, and Peter J. Stuckey. 1999. Constraint

Cascading Style Sheets for the Web. In Proceedings of the 12th Annual ACM
Symposium on User Interface Software and Technology (UIST’15). ACM, New York,
NY, USA, 73ś82. https://doi.org/10.1145/320719.322588

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Proceedings of the 23rd International Conference on Computer Aided Verification
(Snowbird, UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg, 171ś177. http:
//dl.acm.org/citation.cfm?id=2032305.2032319

[3] Jeffrey P. Bigham. 2014. Making the Web Easier to See with Opportunistic
Accessibility Improvement. In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14).
ACM, New York, NY, USA, 117ś122. https://doi.org/10.1145/2642918.2647357

[4] Alan Borning, Richard Lin, and Kim Marriott. 1997. Constraints for the Web.
In Proceedings of the Fifth ACM International Conference on Multimedia (Seattle,
Washington, USA) (MULTIMEDIA ’97). ACM, New York, NY, USA, 173ś182. https:
//doi.org/10.1145/266180.266361

[5] Bert Bos. 2016. CSS 2.2: Collapsing Margins. https://tinyurl.com/j66mfru.
[6] Bert Bos. 2016. CSS 2.2: Floats. https://tinyurl.com/ssn8rco.
[7] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie. 2011. CSS 2.1: Col-

lapsing Margins. https://tinyurl.com/rspsl2j.
[8] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie. 2011. CSS 2.1: Floats.

https://tinyurl.com/s67ebaa.

1041

https://doi.org/10.1145/320719.322588
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
https://doi.org/10.1145/2642918.2647357
https://doi.org/10.1145/266180.266361
https://doi.org/10.1145/266180.266361
https://tinyurl.com/j66mfru
https://tinyurl.com/ssn8rco
https://tinyurl.com/rspsl2j
https://tinyurl.com/s67ebaa

Tree Traversal Synthesis Using Domain-Specific Symbolic Compilation ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[9] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. 1998. CSS 2: Collapsing
Margins. https://tinyurl.com/seb5h92.

[10] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. 1998. CSS 2: Floats.
https://tinyurl.com/vbt29em.

[11] Browserling. 2018. https://www.browserling.com/
[12] Browsershots. 2018. http://browsershots.org/
[13] Browserstack. 2018. https://www.browserstack.com/screenshots
[14] Matt Brubeck. 2014. Incorrect layout of element following a float, involving

margins. https://github.com/servo/servo/issues/4307.
[15] Kartik Chandra and Rastislav Bodík. 2018. Bonsai: synthesis-based reasoning for

type systems. Proc. ACM Program. Lang. 2, POPL (2018), 62:1ś62:34.
[16] S. R. Choudhary, M. R. Prasad, and A. Orso. 2012. CrossCheck: Combining

Crawling and Differencing to Better Detect Cross-browser Incompatibilities in
Web Applications. In 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. 171ś180. https://doi.org/10.1109/ICST.2012.97

[17] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Pro-
grammatic and Direct Manipulation, Together at Last. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (Santa Barbara, CA, USA) (PLDI ’16). ACM, New York, NY, USA, 341ś354.
https://doi.org/10.1145/2908080.2908103

[18] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340.
http://dl.acm.org/citation.cfm?id=1792734.1792766

[19] Joost Engelfriet and Gilberto Filè. 1982. Simple multi-visit attribute grammars.
Journal of computer and system sciences 24, 3 (1982), 283ś314. http://doc.utwente.
nl/69001/

[20] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proceedings of the 39th ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM,
420ś435.

[21] LLC Gurobi Optimization. 2019. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[22] Sylvain Halle, Nicolas Bergeron, Francis Guerin, and Gabriel Le Breton. 2015.
Testing Web Applications Through Layout Constraints. In 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation (ICST). 1ś8.
https://doi.org/10.1109/ICST.2015.7102635

[23] Osamu Hashimoto and Brad A. Myers. 1992. Graphical Styles for Building
Interfaces by Demonstration. In Proceedings of the 5th Annual ACM Symposium
on User Interface Software and Technology (Monteray, California, USA) (UIST ’92).
ACM, New York, NY, USA, 117ś124. https://doi.org/10.1145/142621.142635

[24] IBM. 2016. The CPLEX Optimizer. https://www.ibm.com/analytics/cplex-
optimizer/.

[25] Anantha Keesara. 2007. Bug 15662 - layout is coming down because of style
’float:left’ of <div>. https://bugs.webkit.org/show_bug.cgi?id=15662.

[26] Donald E. Knuth. 1968. Semantics of Context-Free Languages. In In Mathematical
Systems Theory. 127ś145.

[27] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10).
Springer-Verlag, Berlin, Heidelberg, 348ś370. http://dl.acm.org/citation.cfm?id=
1939141.1939161

[28] Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G.J. Hal-
fond. 2018. Automated Repair of Mobile Friendly Problems in Web Pages. In
International Conference on Software Engineering (ICSE 2018). ACM, 140ś150.

[29] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond.
2017. Automated Repair of Layout Cross Browser Issues Using Search-based
Techniques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). ACM, New
York, NY, USA, 249ś260. https://doi.org/10.1145/3092703.3092726

[30] S. Mahajan, A. Alameer, P. McMinn, and W. G. J. Halfond. 2018. Automated
Repair of Internationalization Presentation Failures in Web Pages Using Style
Similarity Clustering and Search-Based Techniques. In 2018 IEEE 11th Interna-
tional Conference on Software Testing, Verification and Validation (ICST). 215ś226.
https://doi.org/10.1109/ICST.2018.00030

[31] A. Mesbah andM. R. Prasad. 2011. Automated cross-browser compatibility testing.
In 2011 33rd International Conference on Software Engineering (ICSE). 561ś570.
https://doi.org/10.1145/1985793.1985870

[32] Leo A. Meyerovich, Matthew E. Torok, Eric Atkinson, and Rastislav Bodik. 2013.
Parallel Schedule Synthesis for Attribute Grammars. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Shenzhen, China) (PPoPP ’13). ACM, New York, NY, USA, 187ś196. https:
//doi.org/10.1145/2442516.2442535

[33] Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures Based on
Congruence Closure. J. ACM 27, 2 (April 1980), 356ś364. https://doi.org/10.
1145/322186.322198

[34] Pavel Panchekha, Adam T. Geller, Michael D Ernst, Zachary Tatlock, and Shoaib
Kamil. 2018. Verifying That Web Pages Have Accessible Layout (PLDI’18). https:
//doi.org/10.1145/3192366.3192407

[35] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam,
Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 181ś194. https://doi.
org/10.1145/2983990.2984010

[36] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla,
Sarah Chasins, and Rastislav Bodik. 2014. Chlorophyll: Synthesis-aided Compiler
for Low-power Spatial Architectures. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 396ś407. https://doi.
org/10.1145/2594291.2594339

[37] The Clang Project. 2021. Clang: a C language family frontend for LLVM. https:
//clang.llvm.org.

[38] The Servo Parallel Browser Engine Project. 2018. Rendering issue of styled
buttons. https://github.com/servo/servo/issues/18991.

[39] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEB-
DIFF: Automated Identification of Cross-browser Issues in Web Applications.
In Proceedings of the 2010 IEEE International Conference on Software Mainte-
nance (ICSM ’10). IEEE Computer Society, Washington, DC, USA, 1ś10. https:
//doi.org/10.1109/ICSM.2010.5609723

[40] Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017. TreeFuser: a
framework for analyzing and fusing general recursive tree traversals. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 76:1ś76:30.

[41] Laith Sakka, Kirshanthan Sundararajah, Ryan R. Newton, and Milind Kulkarni.
2019. Sound, fine-grained traversal fusion for heterogeneous trees. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley
and Kathleen Fisher (Eds.). ACM, 830ś844.

[42] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superopti-
mization. In Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Hous-
ton, Texas, USA) (ASPLOS ’13). ACM, New York, NY, USA, 305ś316. https:
//doi.org/10.1145/2451116.2451150

[43] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
Berkeley, CA, USA. Advisor(s) Bodik, Rastislav. AAI3353225.

[44] Ivan E. Sutherland. 1964. Sketch Pad a Man-machine Graphical Communication
System. In Proceedings of the SHARE Design Automation Workshop (DAC ’64).
ACM, New York, NY, USA, 6.329ś6.346. https://doi.org/10.1145/800265.810742

[45] Emina Torlak and Rastislav Bodik. 2013. Growing Solver-aided Languages with
Rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA) (Onward! 2013). ACM, New York, NY, USA, 135ś152. https://doi.org/10.
1145/2509578.2509586

[46] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Ma-
chine for Solver-aided Host Languages. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Ed-
inburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 530ś541.
https://doi.org/10.1145/2594291.2594340

[47] Richard Uhler and Nirav Dave. 2014. Smten with Satisfiability-based Search. In
Proceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14).
ACM, New York, NY, USA, 157ś176. https://doi.org/10.1145/2660193.2660208

[48] Christopher J. van Wyk. 1982. A High-Level Language for Specifying Pictures.
ACM Trans. Graph. 1, 2 (April 1982), 163ś182. https://doi.org/10.1145/357299.
357303

[49] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. 2017. Automated
Layout Failure Detection for Responsive Web Pages Without an Explicit Oracle.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). ACM, New York, NY,
USA, 192ś202. https://doi.org/10.1145/3092703.3092712

[50] T. A. Walsh, P. McMinn, and G. M. Kapfhammer. 2015. Automatic Detection
of Potential Layout Faults Following Changes to Responsive Web Pages (N). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 709ś714. https://doi.org/10.1109/ASE.2015.31

[51] Leland Wilkinson. 2005. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[52] Brad Vander Zanden and Brad A. Myers. 1991. The Lapidary Graphical Interface
Design Tool. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (New Orleans, Louisiana, USA) (CHI ’91). ACM, New York, NY,
USA, 465ś466. https://doi.org/10.1145/108844.109005

1042

https://tinyurl.com/seb5h92
https://tinyurl.com/vbt29em
https://www.browserling.com/
http://browsershots.org/
https://www.browserstack.com/screenshots
https://github.com/servo/servo/issues/4307
https://doi.org/10.1109/ICST.2012.97
https://doi.org/10.1145/2908080.2908103
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://doc.utwente.nl/69001/
http://doc.utwente.nl/69001/
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/ICST.2015.7102635
https://doi.org/10.1145/142621.142635
https://www.ibm.com/analytics/cplex-optimizer/
https://www.ibm.com/analytics/cplex-optimizer/
https://bugs.webkit.org/show_bug.cgi?id=15662
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1145/3092703.3092726
https://doi.org/10.1109/ICST.2018.00030
https://doi.org/10.1145/1985793.1985870
https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/3192366.3192407
https://doi.org/10.1145/3192366.3192407
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1145/2983990.2984010
https://doi.org/10.1145/2594291.2594339
https://doi.org/10.1145/2594291.2594339
https://clang.llvm.org
https://clang.llvm.org
https://github.com/servo/servo/issues/18991
https://doi.org/10.1109/ICSM.2010.5609723
https://doi.org/10.1109/ICSM.2010.5609723
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/800265.810742
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2660193.2660208
https://doi.org/10.1145/357299.357303
https://doi.org/10.1145/357299.357303
https://doi.org/10.1145/3092703.3092712
https://doi.org/10.1109/ASE.2015.31
https://doi.org/10.1145/108844.109005

	Abstract
	1 Introduction
	2 Overview
	3 Problem Formulation
	3.1 Attribute Grammar for Tree Visitors
	3.2 Language for Tree Traversals

	4 Tree Traversal Synthesis
	4.1 System Overview
	4.2 General-Purpose Symbolic Compilation

	5 Domain-Specific Symbolic Compilation
	5.1 A Trace Language for Tree Traversals
	5.2 Symbolic Compilation of Trace Program

	6 Evaluation
	6.1 Comparison against Grafter
	6.2 Case Study: RenderTree
	6.3 Synthesizing Layout Engine in FTL

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Case Study: AST
	References

