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As smart contracts gain adoption in financial transactions, it becomes increasingly important to ensure

that they are free of bugs and security vulnerabilities. Of particular relevance in this context are arithmetic

overflow bugs, as integers are often used to represent financial assets like account balances. Motivated by

this observation, this paper presents SolType, a refinement type system for Solidity that can be used to

prevent arithmetic over- and under-flows in smart contracts. SolType allows developers to add refinement

type annotations and uses them to prove that arithmetic operations do not lead to over- and under-flows.

SolType incorporates a rich vocabulary of refinement terms that allow expressing relationships between

integer values and aggregate properties of complex data structures. Furthermore, our implementation, called

Solid, incorporates a type inference engine and can automatically infer useful type annotations, including

non-trivial contract invariants.

To evaluate the usefulness of our type system, we use Solid to prove arithmetic safety of a total of 120 smart

contracts. When used in its fully automated mode (i.e., using Solid’s type inference capabilities), Solid is

able to eliminate 86.3% of redundant runtime checks used to guard against overflows. We also compare Solid

against a state-of-the-art arithmetic safety verifier called VeriSmart and show that Solid has a significantly

lower false positive rate, while being significantly faster in terms of verification time.
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1 INTRODUCTION

Smart contracts are programs that run on top of the blockchain and perform financial transactions
in a distributed environment without intervention from trusted third parties. In recent years, smart
contracts have seen widespread adoption, with over 45 million [Etherscan 2021] instances covering
financial products, online gaming, real estate [M. 2018], shipping, and logistics [Straight 2020].
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Because smart contracts deployed on a blockchain are freely accessible through their public
methods, any functional bugs or vulnerabilities inside the contracts can lead to disastrous losses, as
demonstrated by recent attacks [Atzei et al. 2017; Mix 2018; Palladino 2017; Siegel 2016]. There-
fore, unsafe smart contracts are increasingly becoming a serious threat to the success of the
blockchain technology. For example, recent infamous attacks on the Ethereum blockchain such as
the DAO [Siegel 2016] and the Parity Wallet [Palladino 2017] attacks were caused by unsafe smart
contracts. To make things worse, smart contracts are immutable once deployed, so bugs cannot be
easily fixed.

One common type of security vulnerability involving smart contracts is arithmetic overflows. In
fact, according to a recent study, such bugs account for over 96% of CVEs assigned to Ethereum
smart contracts [So et al. 2020]. Furthermore, because smart contracts often use integers to represent
financial assets, arithmetic bugs, if exploited, can cause significant financial damage [Mix 2018].
For this reason, smart contracts rarely directly perform arithmetic operations (e.g., addition) but
instead perform arithmetic indirectly by calling a library called SafeMath. Since this library inserts
run-time checks for over- and under-flows, this approach is effective at preventing exploitable
vulnerabilities but comes with run-time overhead. Furthermore, because computation on the
blockchain costs money (measured in a unit called gas), using the SafeMath library can significantly
increase the cost of running these smart contracts.

Motivated by this observation, we are interested in static techniques that can be used to prevent
integer overflows. Specifically, we propose a refinement type system for Solidity, called SolType, that
can be used to prove that arithmetic operations do not over- or under-flow. Arithmetic operations
that are proven type-safe by SolType are guaranteed to not overflow; thus, SolType can be used to
eliminate unnecessary runtime checks.
While SolType is inspired by prior work on logically qualified types [Rondon et al. 2010, 2008;

Vekris et al. 2016], it needs to address a key challenge that arises in Solidity programs. Because
smart contracts often use non-trivial data structures (e.g., nested mappings or mappings of structs)
to store information about accounts, it is important to reason about the relationship between integer
values and aggregate properties of such data structures. Based on this observation, SolType allows
relational-algebra-like refinements that can be used to perform projections and aggregations over
mappings. While this design choice makes Solid expressive enough to discharge many potential
overflows, it nonetheless enjoys decidable type checking. Furthermore, our implementation, called
Solid, incorporates a type inference engine based on Constrained Horn Clause (CHC) solvers
[Bjùrner et al. 2015] and can therefore automatically infer useful type annotations, including
non-trivial contract invariants.

We evaluate Solid on 120 smart contracts and compare it against Verismart [So et al. 2020], a
state-of-the-art verifier for checking arithmetic safety in smart contracts. Our evaluation shows
that (1) Solid can discharge 86.3% of unnecessary runtime overflow checks, and (2) Solid is both
faster and has a lower false positive rate compared to Verismart. We also perform ablation studies
to justify our key design choices and empirically validate that they are important for achieving
good results.
In summary, this paper makes the following contributions:

• We present a new refinement type system called SolType for proving arithmetic safety properties
of smart contracts written in Solidity. Notably, our type system allows expressing relationships
between integers and aggregate properties of complex data structures.
• We implement the proposed type system in a tool called Solid, which also incorporates a type
inference procedure based on Constrained Horn Clause solvers.
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1 contract ExampleToken is IERC20 {

2 address owner;

3 uint tot;

4 mapping(address => uint) /* { sum(v) <= tot } */ bals;

5 constructor(address _owner) public {

6 owner = _owner;

7 }

8

9 function mint(uint amt) public {

10 require(msg.sender == owner);

11 require(tot + amt >= tot);

12 tot = tot + amt;

13 bals[msg.sender] = bals[msg.sender] + amt;

14 }

15

16 function transfer(address recipient , uint amt) public {

17 require(bals[msg.sender] >= amt);

18 bals[msg.sender] = bals[msg.sender] - amt;

19 bals[recipient] = bals[recipient] + amt;

20 }

21

22 /* ... other functions ... */

23 }

Fig. 1. Excerpt from a typical ERC20 token.

• We evaluate Solid on 120 real-world smart contracts and show that it is useful for eliminating
many run-time checks for arithmetic safety. We also compare Solid against Verismart and
demonstrate its advantages in terms of false positive rate and running time.

2 OVERVIEW

In the section, we go through the high-level idea of our refinement type system using a represen-
tative example.

2.1 Verifying Overflow Safety: A Simple Example

Fig. 1 shows a snippet from a typical implementation of an ERC20 token. Here, the mint function
allows an authorized "owner" address to generate tokens, and the transfer function allows users of
the contract to transfer tokens between each other. User token balances are tracked in the mapping
bals, with the total number of issued tokens stored in tot. It is crucial that the arithmetic does
not overflow in either function; otherwise it would be possible for a malicious agent to arbitrarily
create or destroy tokens.

This contract does not contain any arithmetic overflows because it maintains the invariant that
the summation over the entries in bals is at most tot. This invariant, together with the require

clauses in mint and transfer, ensures that there are no overflows. Such contract invariants can be
expressed as refinement type annotations in Solid. In particular, as shown in line 4, bals has the
refinement type {ν | sum(ν ) ≤ tot}, which is sufficient to prove the absence of overflows in this
program. In the remainder of this section, we illustrate some of the features of Solid using this
example and its variants.
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2.2 Intermediate Representation

Due to imperative features like loops and mutation, Solidity is not directly amenable to refinement
type checking. Thus, similar to prior work [Rondon et al. 2010; Vekris et al. 2016], we first translate
the contract to a intermediate representation (IR) in SSA form that we call MiniSol. Our IR has the
following salient features:

• Variables are assigned exactly once (i.e., SSA form).
• Integers are represented as unbounded integers (i.e., integers in Z) rather than as machine integers
(i.e., integers modulo 2256 − 1).
• Mappings, structs, and arrays are converted into immutable data structures.
• A fetch statement is used to load the values of the storage variables at function entry, and a
commit statement is used to store the values of the storage variables at function exit.

The resulting IR of the example contract is shown in Fig. 2, which we will use for the examples in
this section. Our tool automatically converts Solidity programs to this IR in a pre-processing step
and automatically inserts fetch/commit statements at the necessary places. Similar to the fold/unfold
operations from prior work [Rondon et al. 2010], the use of these fetch/commit statements in the
MiniSol IR allows temporary invariant violations.

2.3 Discharging Overflow Safety on Local Variables

We now demonstrate how our refinement type system can be used to verify arithmetic safety in this
example. Consider the mint function in Fig. 2. The require statement on line 16 is a runtime overflow
check for tot1 + amt. If the runtime check fails, then the contract will abort the current transactions,
meaning that it discards any changes to state variables. However, tot1 + amt >= tot1 only works
as a runtime overflow check when the integers are machine integers. Since Solid operates on
mathematical integers, Solid will heuristically rewrite common overflow check patterns over
machine integers1, such as the one above, into a predicate over mathematical integers:

tot1 + amt ≤ MaxInt

whereMaxInt is a constant equal to the maximum machine integer (= 2256 − 1 for Solidity’s uint

type). Since Solid keeps track of this predicate as a guard predicate, it is able to prove the safety of
the addition on line 17.

Next, we explain how Solid proves the safety of the addition on line 19. For now, let us assume
that the refinement type annotation for bals is indeed valid, i.e., bals1 has the following refinement
type (we omit base type annotations for easier readability):

bals1 : {ν | Sum(ν ) ≤ tot1} (1)

Since bals1 contains only unsigned integers, we refine bals1[msg.sender] with the type:

bals1[msд.sender ] : {ν | ν ≤ Sum(bals1)}

From transitivity of ≤, this implies that bals1[msд.sender ] ≤ tot1. Finally, using the guard predicate
tot1 + amt ≤ MaxInt, Solid is able to prove:

bals1[msд.sender ] + amt ≤ MaxInt

which implies that the addition does not overflow. In a similar manner, Solid can also prove the
safety of the operations in transfer using the refinement type of state variable bals and the require

statement at line 25.

1Specifically, the patterns include X + Y >= X and X + Y >= Y, with similar patterns for multiplication.
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1 contract ExampleToken {

2 owner : addr;

3 bals : map(addr => uint) /* { sum(v) <= tot } */;

4 tot : uint;

5

6 constructor(_owner : addr) public {

7 let owner0 : addr = _owner;

8 let bals0 : map(addr => uint) = zero_map[addr , uint];

9 let tot0 : uint = 0;

10 commit owner0 , bals0 , tot0;

11 }

12

13 fun mint(amt : uint) {

14 fetch owner1 , bals1 , tot1;

15 require(msg.sender == owner1);

16 require(tot1 + amt >= tot1);

17 let tot2 : uint = tot1 + amt;

18 let bals2 : map(addr => uint) =

19 bals1[msg.sender ◁ bals1[msg.sender] + amt];

20 commit owner1 , bals2 , tot2;

21 }

22

23 fun transfer(recipient : address , amt : uint) {

24 fetch owner3 , bals3 , tot3;

25 require(bals3[msg.sender] >= amt);

26 let bals4 : map(addr => uint) =

27 bals3[msg.sender ◁ bals3[msg.sender] - amt];

28 let bals5 : map(addr => uint) =

29 bals4[recipient ◁ bals4[recipient] + amt];

30 commit owner3 , bals5 , tot3;

31 }

32 }

Fig. 2. MiniSol version of the example token (with some irrelevant details omitted)

2.4 Type Checking the Contract Invariant

In the previous subsection, we showed that contract invariants (expressed as refinement type
annotations on state variables) are useful for discharging overflows. However, Solid needs to
establish that these type annotations are valid, meaning that contract invariants are preserved
at the end of functions. For instance, at the end of the mint function, the type checker needs to
establish that bals2 has the following refinement type:

bals2 : {ν | Sum(ν ) ≤ tot2} (2)

To establish this, we proceed as follows: First, from line 19, Solid infers the type of bals2 to be:

bals2 : {ν | Sum(ν ) = Sum(bals1) + amt)} (3)

Then, since tot2 has the refinement type {ν | ν = tot1 + amt} and bals1 has the refinement type
{v | Sum(ν ) ≤ tot1}, we can show that Sum(bals2) ≤ tot2. This establishes the desired contract
invariant (i.e., Eq. 2). Using similar reasoning, Solid can also type check that the contract invariant
is preserved in transfer.
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2.5 Contract Invariant Inference

Although the type annotation is given explicitly in this example, Solid can actually prove the
absence of overflows without any annotations by performing type inference. To do so, Solid first
introduces a ternary uninterpreted predicate I (i.e., unknown contract invariant) for each state
variable (owner, bals, tot) that relates its value ν to the other two state variables. This corresponds
to the following type "annotations" for the state variables:

owner : {ν | I1(ν , tot ,bals)}

tot : {ν | I2(owner ,ν ,bals)}

bals : {ν | I3(owner , tot ,ν )}

Given these type annotations over the unknown predicates I1-I3, Solid generates constraints on
I1-I3 during type inference and leverages a CHC solver to find an instantiation of each Ii . However,
one complication is that we cannot feed all of these constraints to a CHC solver because the
generated constraints may be unsatisfiable. In particular, consider the scenario where the program
contains a hundred arithmetic operations, only one of which is unsafe. If we feed all constraints
generated during type checking to the CHC solver, it will correctly determine that there is no
instantiation of the invariants that will allow us to prove the safety of all arithmetic operations.
However, we would still like to infer a type annotation that will allow us to discharge the remaining
99 arithmetic operations.
To deal with this difficulty, Solid tries to solve the CHC variant of the well-known MaxSAT

problem. That is, in the case where the generated Horn clauses are unsatisfiable, we would like to
find an instantiation of the unknown predicates so that the maximum number of constraints are
satisfied. Solid solves this "MaxCHC"-like problem by generating one overflow checking constraint
at a time and iteratively strengthening the inferred contract invariant. For instance, for our running
example, Solid can automatically infer the desired contract invariant I3, namely sum(bals)<= tot (I1
and I2 are simply true).

2.6 Refinements for Aggregations over Nested Data Structures

A unique aspect of our type system is its ability to express more complex relationships between
integer values and data structures like nested mappings over structs. To illustrate this aspect of the
type system, consider Fig. 3, which is a modified version of Fig. 1 that stores balance values inside
a User struct in a nested mapping. The addition on line 14 cannot overflow because the contract
maintains the invariant that the summation over the bal fields of all the nested User entries in usrs

is at most tot. Solid is able to infer that the type of usrs is

{ν | Sum(Fldbal (Flatten(ν ))) ≤ tot}

In particular, this refinement type captures the contract invariant that the sum of all user balances
nested inside the struct of usrs is bounded by tot. Using such a refinement type, we can prove the
safety of the addition on line 14. Note that the use of operators like Flatten and Fldbal is vital for
successfully discharging the potential overflow in this example.

3 LANGUAGE

In this section, we present the syntax ofMiniSol (Figures 4 and 5), an intermediate representation
for modeling Solidity smart contracts. In what follows, we give a brief overview of the important
features of MiniSol relevant to the rest of the paper.
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1 contract ExampleTokenWithStruct {

2 struct User {

3 uint bal;

4 /* ... other fields ... */

5 }

6

7 /* ... other state variables ... */

8 mapping(address => mapping(uint => User)) usrs;

9

10 function mint(uint amt , uint accno) public {

11 require(msg.sender == owner);

12 require(tot + amt >= tot);

13 tot += amt;

14 usrs[msg.sender ][accno].bal += amt;

15 }

16

17 /* ... other functions ... */

18 }

Fig. 3. The Solidity source code of the running example (Fig. 1) modified to use nested data structures.

3.1 MiniSol Syntax

In MiniSol, a program is a contract C that contains fields (referred to as state variables), struct
definitions S , and function declarations f . State variables are declared and initialized in a constructor
ctor . Functions include a type signature, which provides a type τi for each argument xi as well as
return type τr , and a method body, which is a sequence of statements, followed by an expression.
Statements in MiniSol include let bindings, conditionals, function calls (with pass-by-value

semantics), assertions, and assumptions. As MiniSol programs are assumed to be in SSA form, we
include a join point j for if statements and while loops. In particular, a join point consists of a list of
Φ-node variable declarations, where each xi is declared to be of type τi and may take on the value
of either xi1 or xi2, depending on which branch is taken. In line with this SSA assumption, we also
assume variables are not redeclared.
As mentioned previously, another feature of MiniSol is that it contains fetch and commit

statements for reading the values of all state variables from the blockchain and writing them to the
blockchain respectively. Specifically, the construct

fetchx ′1 asx1, . . . ,x
′
n asxn

simultaneously retrieves the values of state variables x ′1, . . . ,x
′
n and writes them into local variables

x1, . . . ,xn . Similarly, the commit statement

commit e1 tox1, . . . , en toxn

simultaneously stores the result of evaluating expressions e1, . . . , en into state variables x1, . . . ,xn .
Note that Solidity does not contain such fetch and commit constructs; however, we include them in
MiniSol to allow temporary violations of contract invariants inside procedures. Such mechanisms
have also been used in prior work [Rondon et al. 2010; Smith et al. 2000] for similar reasons.
Expressions in MiniSol consist of variables, unsigned integer and boolean constants, binary

operations, and data structure operations. Data structures include maps and structs, and we use
the same notation for accessing/updating structs and maps. In particular, e1[e2] yields the value
stored at key (resp. field) e1 of map (resp. struct) e2. Similarly, e1[e2 ◁ e3] denotes the new map (resp.
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C ::= contractC {ctor
−−→
decl } Contract

ctor ::= ctor(−−−→x : τ ) = s Constructor

decl ::= Body declaration:

fun f (−−−−−→xi : τi ) : τr = s; e function

struct S{
−−−−−→
xi : Ti } struct

s ::= Statement:

letx : τ = e (immutable) assignment
| s1; s2 sequence
| skip skip
| assert e assertion
| assume e assumption
| if e1 then s1 else s2 join j if-then-else
| while j; e do s while loop
| fetchx ′1 asx1, . . . ,x

′
n asxn fetch state variables

| commit e1 tox1, . . . , en toxn commit state variables
| callx : τ = f (e1, . . . , en) function call

j ::=
−−−−−−−−−−−−−−−−−→
xi : τi = Φ(xi1,xi2) Join point

e ::= Expression:

n | true | false | () constants
| x variable
| e1 ⊕ e2 | ¬e binary/unary operation

| mapping(−−−−−−→ni 7→ ei ) mapping with uint keys

| struct S(−−−−−−→xi 7→ ei ) struct
| e1[e2] data structure index
| e1 [e2 ◁ e3] data structure update
| .x field selector

⊕ ∈ {+,−, ∗, /,=,,, ≥, ≤, >, <,∧,∨} Binary operators

Fig. 4. Syntax of MiniSol programs

struct) obtained by writing value e3 at key (resp. field) e2 of e1. For structs, we use a special type of
expression called a field selector to indicate struct access (e.g. e1[.x]).

3.2 Types

Similar to previous refinement type works, MiniSol provides both base type annotations as well as
refinement type annotations (Figure 5). Base types correspond to standard Solidity types, such as
unsigned integers (256-bit), booleans, mappings, and structs. We shorten "mappings" to Map and
assume that all keys are UInts, as most key types in Solidity mappings are coercible to UInt. Thus,
Map(T ) is a mapping from unsigned integers to T s.

A refinement type {ν : T | ϕ} refines the base typeT with a logical qualifierϕ. In this paper, logical
qualifiers belong to the quantifier-free combined theory of rationals, equality with uninterpreted
functions, and arrays. Note that determining validity in this theory is decidable, and we intentionally
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T ::= Base type:

UInt unsigned integer
| Bool boolean
| Map(T ) mapping with unsigned int keys
| Struct S struct

τ ::= {ν : T | ϕ} Refinement type

ϕ ::= t ⊕ t | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ Logical qualifiers

t ::= Refinement terms:

e expressions
| Sum(t) aggregate properties
| Fldx (t) | Flatten(t) aggregate operators
| MaxInt largest actual integer

Fig. 5. Syntax ofMiniSol types

use the theory of rationals rather than integers to keep type checking decidable in the presence
of non-linear multiplication. In more detail, logical qualifiers are boolean combinations of binary
relations ⊕ over refinement terms t , which include both MiniSol expressions as well as terms
containing the special constructs Sum, Fld, and Flatten (represented as uninterpreted functions)
that operate over terms of type Map. In particular,

• Sum(t) represents the sum of all values in t .
• Given a mapping t containing structs, Fldx (t) returns a mapping that only contains field x of the
struct. Thus, Fld is similar to the projection operator from relational algebra.
• Given a nested mapping t , Flatten(t) flattens the map. In particular, given a nested mapping
Map(Map(t)), Flatten produces a mappingMap(t) where each value of the mapping corresponds
to a value of one of the nested mappings fromMap(Map(t)).

In addition to these constructs, refinement terms in MiniSol also include a constant called
MaxInt, which indicates the largest integer value representable in UInt.

Example 1. Consider the usrs mapping in Fig. 3. The predicate

Sum(Fldbal (Flatten(usrs))) ≤ MaxInt

expresses that if we take the usrs mapping (which is of typeMap(Map(User))) and (a) flatten the
nested mapping so that it becomes a non-nested mapping of User; (b) project out the bal field of
each struct to obtain aMap(UInt); and (c) take the sum of values in this final integer mapping, then
the result should be at most MaxInt.

4 TYPE SYSTEM

In this section, we introduce the SolType refinement type system for the MiniSol language.

4.1 Preliminaries

We start by discussing the environments and judgments used in our type system; these are summa-
rized in Fig. 6.

Environments. Our type system employs a local environment Γ and a set of guard predicates γ . A
local environment Γ is a sequence of type bindings (i.e., x : τ ), and we use the notation dom(Γ) to
denote the set of variables bound in Γ. The guard predicates γ consist of (1) a set of path conditions
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Γ ::= ϵ | x : τ , Γ (Local variable bindings)
L ::= Unlocked | Locked (Lock status)
γ ::= ϵ | t ,γ (Guard predicates)

∆ ::= ϵ | ∆, f 7→ (−−−−→xi : τi ,τr ) | (Global declarations)

∆, S 7→
−−−−→
xi : Ti | ∆,x : τ

Γ;γ ⊢ e : τ (Expression typing judgment)
Γ;L,γ ⊢ s ⊣ Γ′;L′,γ ′ (Statement typing judgment)
Γ;γ ; (Γ1;γ1); (Γ2;γ2) ⊢ j ⊣ Γ

′ (Join point typing judgment)

Fig. 6. Environments and judgments used in our typing rules

under which an expression is evaluated and (2) a lock status L (Locked or Unlocked) that tracks
whether the state variables are currently being modified.

In addition to Γ and γ , our typing rules need access to struct and function definitions. For this
purpose, we make use of another environment ∆ that stores function signatures, struct definitions,
and types of the state variables. To avoid cluttering notation, we assume that ∆ is implicitly available
in the expression and statement typing judgments, as ∆ does not change in a function body. We
use the notation ∆(S) to indicate looking up the fields of struct S , and we write ∆(S,x) to retrieve
the type of field x of struct S . Similarly, the notation ∆(f ) yields the function signature of f , which
consists of a sequence of argument type bindings as well as the return type. Finally, given a state
variable x , ∆(x) returns the type of x .

Typing Judgments. As shown in Fig. 6, there are three different typing judgments in MiniSol:

• Expression typing judgments: We use the judgment Γ;γ ⊢ e : τ to type check aMiniSol expression
e . In particular, this judgment indicates that expression e has refinement type τ under local
environment Γ, guard γ , and (implicit) global environment ∆.
• Statement typing judgments: Next, we use a judgment of the form Γ;L,γ ⊢ s ⊣ Γ′;L′,γ ′ to type
check statements. The meaning of this judgment is that statement s type checks under local
environment Γ, lock status L, and guard γ , and it produces a new local type environment Γ′, lock
status L′, and guard γ ′. Note that the statement typing judgments are flow-sensitive in that they
modify the environment, lock status, and guard; this is because (1) let bindings can add new
variables to the local type environment, and (2) fetch/commit statements will modify the lock
status and guard. When the guards are empty, we omit them from the judgment to simplify the
notation.
• Join typing judgments: Finally, we have a third typing judgment for join points of conditionals.
This judgment is of the form Γ;γ ; (Γ1;γ1); (Γ2;γ2) ⊢ j ⊣ Γ

′ where Γ,γ pertain to the state before the
conditional, Γi ,γi pertain to the state after executing each of the branches, and Γ

′ is the resulting
environment after the join point.

Subtyping. Finally, our type system makes use of a subtyping judgment of the form:

Γ;γ ⊨ τ1 <: τ2

which states that, under Γ and γ , the set of values represented by τ1 is a subset of those represented
by τ2. As expected and as shown in Fig. 7, the subtyping judgment reduces to checking logical
implication. In the Sub-Base rule, we use a function Encode to translate Γ,γ and the two qualifiers
ϕ1,ϕ2 to logical formulas which belong to the quantifier-free fragment of the combined theory of
rationals, arrays, equality with uninterpreted functions. Thus, to check whether τ1 is a subtype
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Sub-Base
(Encode(Γ) ∧ Encode(γ ) ∧ Encode(ϕ1) =⇒ Encode(ϕ2)) valid

Γ;γ ⊨ {ν : T | ϕ1} <: {ν : T | ϕ2}

Fig. 7. Subtyping relation

of τ2, we can use an off-the-shelf SMT solver. Since our encoding of refinement types into SMT is
the standard scheme used in [Rondon et al. 2010, 2008; Vekris et al. 2016], we do not explain the
Encode procedure in detail.

Example 2. Consider the following subtyping judgment:

Γ; c ≥ d ⊨ {ν : UInt | ν = a} <: {ν : UInt | ν ≥ d}

where Γ contains four variables a,b, c,d all with base type UInt and a has the refinement ν = b + c .
This subtyping check reduces to querying the validity of the following formula:

ϕT ∧ a = b + c ∧ c ≥ d ∧ ν = a =⇒ ν ≥ d

where ϕT are additional clauses that restrict the terms of type UInt to be in the interval [0,MaxInt].

4.2 Refinement Typing Rules

In this section, we discuss the basic typing rules of SolType, starting with expressions. Note that the
typing rules we describe in this subsection are intentionally imprecise for complex data structures
involving nested mappings or mapping of structs. Since precise handling of complex data structures
requires introducing additional machinery, we delay this discussion until the next subsection.

4.2.1 Expression Typing. Fig. 8 shows the key typing rules for expressions. Since the first two
rules and the rules involving structs are standard, we focus on the remaining rules for arithmetic
expressions and mappings.

Arithmetic expressions. The TE-Plus and TE-Mul rules capture the overflow safety properties of
256-bit integer addition and multiplication respectively. In particular, they check that the sum/prod-
uct of the two expressions is less than MaxInt (when treating them as mathematical integers). The
next rule, TE-Minus, checks that the result of the subtraction is not negative (again, when treated
as mathematical integers). Finally, the TE-Div rule disallows division by zero, and constrains the
result of the division to be in the appropriate range.

Mappings. The next two rules refer to reading from and writing to mappings. As stated earlier, we
only focus on precise typing rules for variables of type Map(UInt) in this section and defer precise
typing rules for more complex maps to the next subsection. Here, according to the Te-MapInd

rule, the result of evaluating e1[e2] is less than or equal to Sum(e1), where Sum is an uninterpreted
function. According to the next rule, called Te-MapUpd, if we write value e3 at index e2 of mapping
e1, the sum of the elements in the resulting mapping is given by:

Sum(e1) − e1[e2] + e3

Thus, this rule, which is based on an axiom from a previous work [Permenev et al. 2020], allows us
to precisely capture the sum of elements in mappings whose value type is UInt.

4.2.2 Statement Typing. Next, we consider the statement typing rules shown in Fig. 9. Again, since
some of the rules are standard, we focus our discussion on aspects that are unique to our type
system.
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Γ;γ ⊢ e : τ Γ;γ ⊨ τ <: τ ′

Γ;γ ⊢ e : τ ′
TE-Sub

Γ(x) = {ν : T | ϕ}

Γ;γ ⊢ x : {ν : T | ν = x}
TE-Var

Γ;γ ⊢ e1 : UInt Γ;γ ⊢ e2 : {ν : UInt | ν + e1 ≤ MaxInt}

Γ;γ ⊢ e1 + e2 : {ν : UInt | ν = e1 + e2}
TE-Plus

Γ;γ ⊢ e1 : UInt Γ;γ ⊢ e2 : {ν : UInt | ν ∗ e1 ≤ MaxInt}

Γ;γ ⊢ e1 ∗ e2 : {ν : UInt | ν = e1 ∗ e2}
TE-Mul

Γ;γ ⊢ e1 : UInt Γ;γ ⊢ e2 : {ν : UInt | ν ≤ e1}

Γ;γ ⊢ e1 − e2 : {ν : UInt | ν = e1 − e2}
TE-Minus

Γ;γ ⊢ e1 : UInt Γ;γ ⊢ e2 : {ν : UInt | ν > 0}

Γ;γ ⊢ e1/e2 : {ν : UInt | e2 ∗ ν ≤ e1 ∧ e1 < (ν + 1) ∗ e2}
TE-Div

Γ;γ ⊢ e1 : Map(T ) Γ;γ ⊢ e2 : UInt

ϕa =

{

ν ≤ Sum(e1) if T = UInt

true otherwise

Γ;γ ⊢ e1[e2] : {ν : T | ν = e1[e2] ∧ ϕa}
TE-MapInd

Γ;γ ⊢ e1 : Map(T ) Γ;γ ⊢ e2 : UInt Γ;γ ⊢ e3 : T

ϕa =

{

Sum(ν ) = Sum(e1) − e1[e2] + e3 if T = UInt

true otherwise

Γ;γ ⊢ e1 [e2 ◁ e3] : {ν : Map(T ) | ν = e1 [e2 ◁ e3] ∧ ϕa}
TE-MapUpd

Γ;γ ⊢ e1 : Struct S ∆(S,x) = T

Γ;γ ⊢ e1[.x] : {ν : T | ν = e1[.x]}
TE-SctInd

Γ;γ ⊢ e1 : Struct S Γ;γ ⊢ e2 : T ∆(S,x) = T

Γ;γ ⊢ e1 [.x ◁ e2] : {ν : T | ν = e1 [.x ◁ e2]}
TE-SctUpd

Fig. 8. Main refinement typing rules for expressions

Conditionals. In the conditional rule TS-If, we separately type check the true and false branches,
adding the appropriate predicate (i.e., e or ¬e) to the statement guard for each branch. The results
of the two branches are combined using the join typing judgment T-Join (also shown in Fig. 9). In
particular, the join rule checks the type annotations for variables that are introduced via Φ nodes in
SSA form and requires that the type of the xi variants in each branch is a subtype of the declared
type τi of xi . Note also that the join rule requires agreement between the lock states in the two
branches. This means that either (1) both branches commit their changes to state variables, or (2)
both have uncommitted changes.
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Γ1;L1,γ1 ⊢ s1 ⊣ Γ2;L2,γ2
Γ2;L2,γ2 ⊢ s2 ⊣ Γ3;L3,γ3

Γ1;L1,γ1 ⊢ s1; s2 ⊣ Γ3;L3,γ3
TS-Seq

Γ;γ ⊢ e : τ x < dom(Γ)

Γ;L,γ ⊢ letx : τ = e ⊣ x : τ , Γ;L,γ
TS-Let

Γ1;γ ⊢ e : Bool Γ1;L, e,γ ⊢ s1 ⊣ Γ11;L
′
,γ1

Γ1;L,¬e,γ ⊢ s2 ⊣ Γ12;L
′
,γ2 Γ1;γ ; (Γ11,γ1); (Γ12,γ2) ⊢ j ⊣ Γ2

Γ1;L,γ ⊢ if e then s1 else s2 join j ⊣ Γ2;L
′
,γ

TS-If

Γ;γ ⊢ e : {ν : Bool | ν = true}

Γ;L,γ ⊢ assert e ⊣ Γ;L,γ
TS-Assert

Γ;γ ⊢ e : Bool

Γ;L,γ ⊢ assume e ⊣ Γ;L, e,γ
TS-Assume

for all i = 1..n, xi < dom(Γ1) ∆(x ′i ) = τi
τ ′i = τi [x

′
1 7→ x1, . . . ,x

′
i 7→ ν , . . . ,x ′n 7→ xn ]

Γ2 = x1 : τ
′
1, . . . ,xn : τ ′n , Γ1

Γ1;Unlocked,γ ⊢ fetch
−−−−−→
x ′i asxi ⊣ Γ2; Locked,γ

TS-Fetch

for all i = 1..n, Γ;γ ⊢ ei : τi ∆(xi ) = τi
Γ;γ ⊨ τi <: τ

′
i [x1 7→ e1, . . . ,xi 7→ ν , . . . ,xn 7→ en ]

Γ; Locked,γ ⊢ commit e1 tox1, . . . , en toxn ⊣ Γ;Unlocked,γ
TS-Commit

∆(f ) = ((x ′1 : τ
′
1, . . . ,x

′
n : τ ′n ),τr ) Γ2 = x : τr [x

′
1 7→ e1, . . . ,x

′
n 7→ en ], Γ1

for all i = 1..n, Γ1;γ ⊢ ei : τi
Γ1;γ ⊨ τi <: τ

′
i [x
′
1 7→ e1, . . . ,x

′
i 7→ ν , . . . ,x ′n 7→ en ]

Γ1;Unlocked,γ ⊢ callx : τr = f (e1, . . . , en ) ⊣ Γ2;Unlocked,γ
TS-Call

for all xi ,

xi < dom(Γ) Γ1;γ1 ⊢ xi1 : {ν : Ti1 | ϕi1} Γ2;γ2 ⊢ xi2 : {ν : Ti2 | ϕi2}

Γ1;γ1 ⊨ {ν : Ti1 | ν = xi1} <: τi [(
−−−−−−−→xi 7→ xi1)]

Γ2;γ2 ⊨ {ν : Ti2 | ν = xi2} <: τi [(
−−−−−−−→xi 7→ xi2)] Γ

′
=
−−−−→xi : τi , Γ

Γ;γ ; (Γ1;L,γ1); (Γ2;L,γ2) ⊢
−−−−−−−−−−−−−−−−−→
xi : τi = Φ(xi1,xi2) ⊣ Γ

′
T-Join

−−−−→xi : τi ;Unlocked ⊢ s ⊣ Γ;Unlocked,γ

γ = Unlocked,γ ′ Γ;γ ⊢ e : τ ′r Γ;γ ⊨ τ ′r <: τr

⊢ fun f (−−−−−→xi : τi ) : τr = s; e
T-FunDecl

Fig. 9. Main typing rules for statements and function definitions

Fetch and Commit. As mentioned earlier,MiniSol contains fetch and commit statements, with
the intention of allowing temporary violations of contract invariants. The TS-Fetch and TS-Commit
rules provide type checking rules for these two statements. Specifically, the TS-Fetch rule says
that, when no łlock" is held on the state variables (indicated by a lock status Unlocked), a fetch
statement can be used to łacquire" a lock and copy the current values of the state variables into a
set of freshly declared variables. The contract invariant will be assumed to hold on these variables.

Next, according to the TS-Commit rule, a commit statement can be used to łrelease" the lock and
write the provided expressions back to the state variables. The contract invariant will be checked
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to hold on the provided expressions. Thus, our fetch and commit constructs allow temporary
violations of the contract invariant in between these fetch and commit statements.

Function Calls. The TS-Call rule in Fig. 9 is used to type check function calls. In particular,
since the contract invariant should not be violated between different transactions, our type system
enforces that all state variables have been committed by requiring that the current state isUnlocked.
Since the type checking of function arguments and return value is standard, the rest of the rule is
fairly self-explanatory.

Function Definitions. Finally, we consider the type checking rule for function definitions (rule
T-FunDecl rule in Fig. 9). According to this rule, a function declaration is well-typed if its body s is
well-typed (with the environment initially set to the arguments and lock status being Unlocked),
and the returned expression has type τr after executing s .

4.3 Generalizing Sum Axioms to Deeply Nested Mappings

The TE-MapInd and TE-MapUpd rules that we presented in Fig. 8 are sufficient for handling
maps over integers; however, they are completely imprecise for more complex data structures,
such as nested mappings or mappings of structs. Since Solidity programs often employ deeply
nested mappings involving structs, it is crucial to have precise typing rules for more complex
data structures. Therefore, in this section, we show how to generalize our precise typing rules for
mappings over integers to arbitrarily nested mappings.

To gain some intuition about how to generalize these typing rules, consider the usrs mapping in
Fig. 3. The update to usrs on line 14 is expressed in our IR as a sequence of map lookup operations
followed by a sequence of updates:

// usrs0 has type mapping(address => mapping(uint => User))

let m0 = usrs0[msg.sender ]; // lookup

let u0 = m0[accno]; // lookup

let b0 = u0[.bal]; // access bal field

let u1 = u0[.bal ◁ b0 + amt]; // update bal field of struct

let m1 = m0[accno ◁ u1]; // update usrs[msg.sender] with updated struct

let usrs1 = usrs0[msg.sender ◁ m1]; // update usrs with updated nested mapping

Before we consider the revised typing rules, let us first consider the constraints we would want

to generate for this example:

• For the first line, usrs0 is a nested mapping containing a struct called User which has an integer
field called bal, and m0 is a mapping over Users. Based on the semantics of our refinement terms,
the assignment on the first line imposes the following constraint on m0:

Sum(Fldbal (m0)) ≤ Sum(Fldbal (Flatten(usrs0)))

• Using similar reasoning, we can infer the following constraint on u0, which is of type User:

u0[.bal] ≤ Sum(Fldbal (m0))

• When we update m1 on the fourth line, this again imposes a constraint involving Sum:

Sum(Fldbal (m1)) = Sum(Fldbal (m0)) −m0[accno][.bal] + u1[.bal]

• Finally, for the update on the last line, we can infer:

Sum(Fldbal (Flatten(usrs1))) =
Sum(Fldbal (Flatten(m0))) − Sum(Fldbal (m0)) + Sum(Fldbal (m1))
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Th � H : Map(UInt),w

Th � Sum(H ) : UInt,w
TH-Sum

Th � H : Map(Map(T )),w

Th � Flatten(H ) : Map(T ),w
TH-Flatten

Th � H : Map(Struct S),w ∆(S,x) = T

Th � Fldx (H ) : Map(T ),wx
TH-Fld

Th � H : Struct S,w ∆(S,x) = T

Th � H [.x] : T ,wx
TH-FldAcc

Th � □ : Th , ϵ
TH-Hole

Fig. 10. Inference rules for type-directed synthesis of refinement term templates

As we can see from this example, the shape of the constraints we infer for complex map reads
and writes is very similar to what we had in the TE-MapInd and the TE-MapUpd rules from Fig. 8.
In particular, reading from a map imposes constraints of the form:

H2(m[k]) ≤ H1(m) (4)

whereas updating a map imposes constraints of the form:

H1(m [k ◁v]) = H1(m) − H2(m[k]) + H2(v) (5)

Therefore, we can easily generalize the TE-MapInd and the TE-MapUpd rules to arbitrarily complex
mappings as long as we have a way of figuring out how to instantiate H1,H2 in Equations 4 and 5.

4.3.1 Refinement Term Templates. Based on the above observation, given a source expression e of
some base type T , we want a way to automatically generate relevant refinement terms of the form
H (e). To facilitate this, we first introduce the notion of templatized refinement terms:

Definition 1. (Templatized refinement term) A refinement term template H is a refinement
term containing a unique hole, denoted □. Given such a template H , we write H (e) to denote the
refinement term obtained by filling the hole □ in H with e .

For instance, H = Sum(Fldbal(□)) is a valid template, and H (m0) yields Sum(Fldbal(m0)).
Next, given a typeTh , we need a way to generate all templates that can be applied to expressions

of typeTh . Towards this purpose, we introduce a template synthesis judgment of the following form:

Th � H : T ,w (Template synthesis judgment)

The meaning of this judgment is that, given an expression e of type Th , H (e) is a well-typed term
of type T . In this judgment, w is a so-called access path that keeps track of the field accesses we
need to perform to get from e to H (e). In particular, an access path is a string over the language of
field names, defined according to the following grammar:

w ::= ϵ | xw (Access path)

where x is the name of a field. As we will see shortly, we need this concept of access path to ensure
that we do not generate non-sensical constraints in our generalized type checking rules for map
reads and writes.

Fig. 10 shows our rules for synthesizing refinement term templates. The first rule, TH-Sum, states
that we can apply the Sum operator to an expression whose base type isMap(UInt). The second
rule, TH-Flatten, allows applying a Flatten operation to any term of typeMap(Map(T )). The third
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Γ;γ ⊢ e1 : Map(T ) Γ;γ ⊢ e2 : UInt ϕa =
∧

i

Hi2(ν ) ≤ Hi1(e1)

for each i , Map(T ) � Hi1 : UInt,wi T � Hi2 : UInt,wi

Γ;γ ⊢ e1[e2] : {ν : T | ν = e1[e2] ∧ ϕa}
TE-MapInd

Γ;γ ⊢ e1 : Map(T ) Γ;γ ⊢ e2 : UInt

Γ;γ ⊢ e3 : T ϕa =
∧

i

(Hi1(ν ) = Hi1(e1) − Hi2(e1[e2]) + Hi2(e3))

for each i , Map(T ) � Hi1 : UInt,wi T � Hi2 : UInt,wi

Γ;γ ⊢ e1 [e2 ◁ e3] : {ν : Map(T ) | ν = e1 [e2 ◁ e3] ∧ ϕa}
TE-MapUpd

Fig. 11. Updated typing rules for mappings, where refinement term templates are used to generate sum

properties over nested data structures.

rule, TH-Fld, states that we can apply a projection operator to an expression that is a mapping
of structs. In other words, if H is a mapping over structs S and S has a field called x , then we can
generate the template Fldx (H ). Since this involves a field access, note that the TH-Fld rule adds
x to the access path. The next rule, Th-FldAcc, is very similar but applies to structs instead of
mappings of structs. In particular, if H has struct type S with field x , it is valid to access the x
field of H . As in the previous case, this rule appends x to the resulting access path. The final rule,
TH-Hole is a base case and states that the hole is constrained to have the specified type Th .

4.3.2 Generalized Typing Rules for Map Reads and Writes. Equipped with the template synthesis
rules, we are now ready to present the generalized and precise versions of TH-MapInd and TH-

MapUpd rules for arbitrarily complex mappings.
The new TE-MapInd rule shown in Fig. 11 generates precise constraints on e1[e2] where e1 is

has type Map(T ). As illustrated earlier through the example, this rule generates constraints of
the form H2(ν ) ≤ H1(e1), where H1,H2 are templates that can be applied to terms of typeMap(T )

and T respectively. Since a given struct can have multiple integer fields, this rule generates a
conjunction of such constraints, one for each integer field. Note that, for each constraint of the
form Hi2(ν ) ≤ Hi1(e1) in this rule, we enforce that the corresponding access paths wi match, as,
otherwise, the generated constraints would not make sense.

Next, we consider the new TE-MapUpd rule in Fig. 11 for updating maps. Specifically, given an
expression e1[e1 ◁ e3] where e1 is of typeMap(T ), this rule generates a conjunction of constraints
of the form:

Hi1(ν ) = Hi2(e1) − Hi2(e1[e2]) + Hi2(e3),

one for each integer field accessible from T . As in the previous case, we use the notion of access
paths to ensure that the hole templates Hi1 and Hi2 correspond to the same field sequence.

Example 3. Consider again the update to usrs on line 14 of Fig 3. We demonstrate how the TE-
MapInd rule generates typing constraints. First, since usrs has type Map(Map(User)), we have
T = Map(User). From the synthesis rules, one such instantiation for Hi1 is Sum(Fldbal (Flatten(□))),
as shown by the following derivation tree:
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TH-Sum

TH-Fld

TH-Flatten

TH-Hole
Map(Map(User )) � □ : Map(Map(User )), ϵ

Map(Map(User )) � Flatten(□) : Map(User ),bal ∆(User ,bal) = UInt

Map(Map(User )) � Fldbal (Flatten(□)) : Map(UInt),bal

Map(Map(User )) � Sum(Fldbal (Flatten(□))) : UInt,bal

Next, we find an instantiation for Hi2 that accesses the same fieldsw = bal . It can be proven that

Map(Struct) � Sum(Fldbal (□)) : UInt,bal

which yields Hi2 = Sum(Fldbal (□)). Then, using the TE-MapInd rule, we obtain the constraint

Sum(Fldbal (ν )) ≤ Sum(Fldbal (Flatten(usrs))) (6)

Note that this is only one of the predicates that we can derive. For example, if the User had another
integer field called frozen, we would also generate the following predicate:

Sum(Fldf rozen(ν )) ≤ Sum(Fldf rozen(Flatten(usrs))) (7)

Taking the conjunction of Eqs. (6) and (7), we obtain the following type for usrs[msg.sender]:

usrs[msд.sender ] : {ν |ν = usrs[msд.sender ]

∧ Sum(Fldbal (ν )) ≤ Sum(Fldbal (Flatten(usrs)))

∧ Sum(Fldf rozen(ν )) ≤ Sum(Fldf rozen(Flatten(usrs)))}

4.4 Soundness

We characterize the soundness of our type system in the typical way through progress and preser-
vation theorems for both expressions and statements. We briefly state the key propositions and
refer the reader to the extended version of the paper [Tan et al. 2021] for details.
The execution of a MiniSol program can be modeled as evaluation of a closed statement.

Motivated by this observation, expressions are evaluated under the empty environment and empty
guard predicates.

Proposition 2 (Progress for Expressions). If ϵ ; ϵ ⊢ e : τ , then e is a value or there exists an e ′

such that e → e ′.

Here, e → e ′ is the standard expression evaluation relation, and progress can be proven by
induction in the standard way. On the other hand, proving preservation is more interesting, mainly
due to the rules from Fig. 11 for complex data structures. To prove preservation, we first need to
prove a lemma that that relates each sum function generated in the refinement of a mapping to
that of the corresponding sum function generated for each entry (value) in the mapping. With such
a lemma, we can prove the following preservation theorem in a fairly standard way:

Proposition 3 (Preservation for Expressions). If ϵ ; ϵ ⊢ e : τ and e → e ′, then ϵ ; ϵ ⊢ e ′ : τ .

Next, to formulate the progress and preservation theorems for statements, we first introduce the
following notation:

σ (State variable store)
(s,σ ) → (s ′,σ ′,σsub ) (Statement evaluation relation)
⊨ σ (Store typing)

The state variable store σ contains the value bindings for the state variables. The statement
evaluation relation (s,σ ) → (s ′,σ ′,σsub ) indicates that, starting with state variable bindings σ ,
the statement s will step to a statement s ′ with updated bindings σ ′ and a set of local variable
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bindings σsub to apply to the statements following s ′. The store typing judgment ⊨ σ asserts that
the bindings in σ are well-typed.

With this notation in place, we formulate the progress and preservation theorems for statements
as Propositions 4 and 5. Note that assume false in Proposition 4 corresponds to a failed runtime
check.

Proposition 4 (Progress for Statements). If ϵ ;L ⊢ s ⊣ Γ;L′,γ and ⊨ σ , then s = skip, or

s = assume false, or there exist s ′,σ ′,σsub such that (s,σ ) → (s ′,σ ′,σsub ).

Proposition 5 (Preservation for Statements). If all of the following hold:

(a) ϵ ;L0 ⊢ s ⊣ Γ;L
′
,γ

(b) ⊨ σ

(c) (s,σ ) → (s ′,σ ′,σsub )

then there exist L′0, Γ
′
,γ ′ such that

(i) ϵ ;L′0 ⊢ s
′ ⊣ Γ′;L′,γ ′

(ii) ⊨ σ ′

While progress for statements can be proven in the standard way, preservation is trickier to prove
since the resulting statement s ′may be typed under different environment and guard predicates than
s . To this end, we instead prove a strengthened version of preservation that implies Proposition 5;
we refer the reader to the extended version of the paper [Tan et al. 2021] for the details.

5 TYPE INFERENCE

In this section, we describe our algorithm for automatically inferring refinement type annotations.
Since writing refinement type annotations for every variable can be cumbersome, Solid infers
types for both local and global (state) variables.
As mentioned earlier, the key idea underlying our type inference algorithm is to reduce the

type inference problem to Constrained Horn Clause (CHC) solving [Bjùrner et al. 2015]. However,
since not all arithmetic operations in the program are guaranteed to be overflow-safe, the CHC
constraints generated by the type checking algorithm will, in general, not be satisfiable. Thus, our
high-level idea is to treat the overflow safety constraints as soft constraints and find type annotations
that try to satisfy as many soft clauses as possible.

Before we explain our algorithm, we first clarify some assumptions that we make about the type
checking phase. First, we assume that, during constraint generation, the refinement type of every
variable v without a type annotation is represented with a fresh uninterpreted predicate symbol
pv . Second, we assume that the generated constraints are marked as either being hard or soft. In
particular, the overflow safety constraints generated using the TE-Plus, TE-Minus etc. rules are
considered to be soft constraints, while all other constraints are marked as hard. Third, we assume
that the constraint generation phase imposes a partial order on the soft constraints. In particular, if
c, c ′ are soft constraints generated when analyzing expressions e, e ′ and e must be evaluated before
e ′, then we have c ≺ c ′. As we will see shortly, this partial order allows us to assume, when trying
to satisfy some soft constraint c , that overflow safety checks that happened before c did not fail.

Our type inference procedure InferTypes is shown in Figure 12 and takes three inputs, namely
a set of soft and hard constraints, Cs and Ch respectively, and a partial order ⪯ on soft constraints
as described above. The output of the algorithm is a mapping Σ from each uninterpreted predicate
symbol to a refinement type annotation.
Initially, the algorithm starts by initializing every uninterpreted predicate symbol pv to true

(line 5) and then enters a loop where the interpretation for each pv is gradually strengthened. In
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1: procedure InferTypes(Cs , Ch , ⪯)
2: Input: Soft clauses Cs , hard clauses Ch , partial order ⪯ on Cs

3: Output:Mapping Σ from uninterpreted predicatesCs ∪Ch to refinement type annotations

4: P ← Preds(Cs ∪Ch)

5: Σ← {p 7→ ⊤ | p ∈ P}

6: for c ∈ Cs do

7: ΦA ←
∧

ci ≺c ci ; ΦH ←
∧

c j ∈Ch
c j

8: (r ,σ ) ← SolveCHC((ΦA → c) ∧ ΦH )

9: if r = UNSAT then

10: continue

11: for p ∈ Dom(σ ) do

12: ϕ ← Σ(p) ∧ σ (p)

13: Σ← Σ[p 7→ ϕ]

14: return Σ

Fig. 12. Type inference procedure

particular, in every loop iteration, we pick one of the soft constraints c and try to satisfy c along
with all the hard constraints CH . In doing so, we can assume all the overflow safety checks that
happened to prior to c; thus, at line 8, we feed the following constraint to an off-the-shelf CHC
solver:

((
∧

ci ≺c

ci

)

→ c
)

∧
∧

c j ∈Ch

c j

In other words, we try to satisfy this particular soft constraint together with all the hard constraints,
under the assumption that previous overflow checks did not fail. This assumption is safe since
Solid inserts run-time overflow checks for any operation that cannot be statically verified. If this
constraint is unsatisfiable, we move on and try to satisfy the next soft constraint. On the other hand,
if it is satisfiable, we strengthen the type annotation for the unknown predicates by conjoining it
with the assignment produced by the CHC solver (line 12).

6 IMPLEMENTATION

We implemented our type checking and type inference algorithms in a prototype called Solid.
Given a Solidity source file, Solid will run the aforementioned algorithms and, for each arithmetic
operation, output whether its corresponding soft constraint is satisfied or violated. Our tool is
written in Haskell, with about 3000 lines of code for the frontend (e.g., Solidity preprocessing,
lowering, SSA transformation) and 4000 lines of code for the backend (e.g., constraint generation,
SMT embedding, solving). Solid uses the Z3 SMT solver [de Moura and Bjùrner 2008] and the
Spacer CHC solver [Komuravelli et al. 2014] in its backend, and it leverages the Slither [Feist et al.
2019] analyzer as part of its front-end. In what follows, we discuss various aspects of Solidity and
how we handle them in the MiniSol IR.

Preprocessing Solidity code. To facilitate verification, we preprocess Solidity smart contracts before
we translate them to the MiniSol IR. In particular, we partially evaluate constant arithmetic expres-
sions such as 6 * 10**26, which frequently appear in constructors and initialization expressions.
We also inline internal function calls.
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Function call handling. Our implementation automatically inserts fetch and commit statements
between function call boundaries, such as at the beginning of a function, before and after function
calls or calls to external contracts, and before returning from a function. This includes most function
calls, including monetary transfers like msg.sender.send(..) and calls to "non-pure" functions in the
same file. In Solidity, functions may be marked "pure", meaning they do not read or write to state
variables. We modified the TS-Call rule to not require the state variables to be unlocked when
making calls to a pure function.

Loops. Our implementation supports while-loops and for-loops using a variation of the TS-If
rule. Performing effective type inference in the presence of loops (particularly, doubly-nested
loops) is challenging, as existing CHC solvers have a hard time solving the resulting constraints.
Inferring invariants for complex loops could be an interesting direction for future work, however,
in practice, such loops are rare [Mariano et al. 2020] and we found they are mostly irrelevant to
proving overflow safety. Our prototype implementation does not support complex control flow
inside loops such as break or continue statements.

References and aliasing. Since everything is passed by value in MiniSol, the language shown in
Figure 4 does not have aliasing. Thus, as standard [Barnett et al. 2005; Flanagan et al. 2002], our
translation from Solidity to MiniSol introduces additional mappings to account for possible aliasing.
At a high-level, the idea is that, for any variables X = {x1, . . . ,xn} that may alias each other, we
introduce a mappingMX and model stores (resp. loads) to any xi as writing to (resp. reading from)
MX [xi ].

Unsupported features. Our implementation does not support some Solidity features such as inline
assembly, states of external contracts, bitwise operations, and exponentiation. When translating to
the MiniSol IR, we model these statements using "havoc" expressions as is standard [Barnett et al.
2005].

7 EVALUATION

In this section, we describe a series of experiments that are designed to answer the following
research questions:

• RQ1: Can Solid successfully remove redundant overflow checks without manual annotations?
• RQ2:What is Solid’s false positive rate?
• RQ3: How long does Solid take to type check real-world smart contracts?
• RQ4: How does Solid compare against existing state-of-the art tools?
• RQ5: How important are type inference and the proposed refinement typing rules for more
complex data structures?

Baseline. To answer our fourth research question, we compare Solid against Verismart, which is
a state-of-the-art Solidity verifier that focuses on proving arithmetic safety properties [So et al. 2020].
We chooseVerismart as our baseline because it has been shown to outperform other smart contract
verifiers for checking arithmetic safety [So et al. 2020]. Verismart infers so-called transaction

invariants through a domain-specific instantiation of the counterexample-guided inductive synthesis

(CEGIS) framework [Solar-Lezama 2009] and uses the inferred invariants to discharge potential
overflow errors. To perform this evaluation, we built the latest version of Verismart from source
(version from May 31, 2020) and ran both tools on all the benchmarks, using versions 0.4.26 and
0.5.17 of the Solidity compiler.
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Table 1. Statistics about our benchmarks from Etherscan

Description Stats

% contracts containing mappings of structs 26.7%

% contracts containing nested mappings 81.3%

Average lines of code 389

Average number of methods 29.6

Setup. We performed all experiments on a computer with an AMD Ryzen 5900X CPU and 32GB
of RAM. We used version 4.8.9 of the Z3 SMT solver, which also has the built-in Spacer CHC solver
[Komuravelli et al. 2014]. In our experiments, we set a time limit of 10 seconds per Z3 query.

Settings. Our implementation can be used in two modes that we refer to as Auto-Solid and
Semi-Solid. In particular, Auto-Solid is fully automated and uses our type inference procedure
to infer type annotations for state variables (i.e., contract invariants). On the other hand, Semi-
Solid requires the programmer to provide contract invariants but automatically infers types for
local variables. To use Solid in this semi-automated mode, we manually wrote refinement type
annotations for state variables by inspecting the source code of the contract.

7.1 Benchmarks

We evaluate Solid on two different sets of benchmark suites that we refer to as łVerismart
benchmarksž and łEtherscan benchmarksž. As its name indicates, the former one is taken from
the Verismart evaluation [So et al. 2020] and consists of 60 smart contracts that have at least one
vulnerability reported in the CVE database. Since these benchmarks are from 2018 and do not reflect
rapid changes in smart contract development, we also evaluate our approach on another benchmark
suite collected from Etherscan. The latter benchmark suite consists of another 60 contracts
randomly sampled from Etherscan in March 2021. Table 1 presents some relevant statistics
about the contracts in this dataset. Since the goal is to discharge redundant SafeMath2 calls,
we preprocessed the benchmarks by replacing all SafeMath method calls with their equivalent
unchecked operations. Thus, the reader should be advised that the "Verismart benchmarks" are
not exactly the same as the ones in [So et al. 2020].
Although our preprocessed benchmarks technically do not contain any SafeMath runtime

checks, in the following discussion, we will use the terms "run-time checks", "redundant checks",
and "necessary checks" to refer to arithmetic operations, provably overflow-safe operations, and
operations whose overflow-safety cannot be proven, respectively.

7.2 Discharging Redundant SafeMath Calls

We performed a manual inspection of all 120 benchmarks to determine how many of the SafeMath

run-time checks are redundant. In total, among the 1309 run-time checks, we determined 853 of
them to be redundant (390 in Verismart and 463 in Etherscan). In this experiment, we evaluate
what percentage of these redundant checks Verismart, Auto-Solid, and Semi-Solid are able to
discharge.

The results from this evaluation are shown in Table 2. The key-take away is that Auto-Solid is
able to discharge more run-time checks in both benchmark suites. In particular, for the Verismart
benchmarks, Auto-Solid can discharge approximately 12% more overflow checks, and for the

2Recall that SafeMath is a library that inserts runtime checks before each arithmetic operation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 4. Publication date: January 2022.



4:22 Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng

Table 2. Number and percentage of redundant overflow checks that can be eliminated by each tool. The Ops

column displays the total number of SafeMath checks. Under each tool, the Safe column lists the number

of arithmetic operations that can be proven safe by that tool, and the % column shows the percentage of

redundant overflow checks that can be discharged.

Dataset Ops #redundant
Verismart Auto-Solid Semi-Solid
Safe % Safe % Safe %

Verismart 642 390 294 75.4% 340 87.2% 351 90.0%

Etherscan 667 463 272 58.7% 396 85.5% 417 90.1%

Total 1309 853 566 66.4% 736 86.3% 768 90.0%

Table 3. Comparison of false positive rates

Verismart Auto-Solid Semi-Solid

Verismart Benchmarks

# false positives 97 50 41

# true positives 251 252 252

False positive rate 27.9% 16.2% 14.0%

Etherscan Benchmarks

# false positives 195 67 46

# true positives 200 204 204

False positive rate 49.4% 24.7% 18.4%

Overall

# false positives 292 117 87

# true positives 451 456 456

False positive rate 39.3% 20.4% 16.0%

Etherscan benchmarks, this difference increases to 27%. If we additionally leverage manually-
written refinement type annotations, then Semi-Solid can discharge almost 90% of the redundant
checks across both datasets.

Result for RQ1: Solid can automatically prove that 86.3% of the redundant SafeMath

calls are unnecessary. In contrast, Verismart can only discharge 66.4%.

7.3 False Positive Evaluation

Next, we evaluate Solid’s false positive rate in both the fully-automated and semi-automated
modes and compare it against Verismart. In particular, Table 3 shows the number of true and
false positives as well as the false positive rate for each tool for both benchmark suites. Across
all benchmarks, Verismart reports 292 false alarms, which corresponds to a false positive rate of
39.3%. On the other hand, Auto-Solid only reports 117 false alarms with a false positive rate of
20.4%. Finally, Semi-Solid has an ever lower false positive rate of 16.0%.
It is worth noting that the false positive rate for Semi-Solid can be further reduced by spend-

ing additional effort in strengthening our refinement type annotations. When performing this
evaluation, we did not refine our initial type annotations based on feedback from the type checker.
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Table 4. Comparison of average running times in seconds

Dataset Verismart Auto-Solid Semi-Solid

Verismart 476 62 9

Etherscan 425 24 10

Overall 451 41 10

Table 5. Experiments to evaluate type inference. This experiment is conducted on the Etherscan benchmarks.

Solid-NoInfer Solid-NoSoft Solid

False positive rate 48.7% 69.4% 24.7%

Cause of false positives for Auto-Solid. As expected, the cause of most false positives for Auto-
Solid is due to the limitations of the CHC solver. There are several cases where the CHC solver
times-out or returns unknown, causing Auto-Solid to report false positives.

Qualitative comparison againstVerismart. We believe that Solid outperformsVerismart largely
due to its ability to express relationships between integers and aggregate properties of data struc-
tures. In particular, while Verismart can reason about summations over basic mappings, it cannot
easily express aggregate properties of more complex data structures.

Result for RQ2 and RQ4. In its fully automated mode, Solid has a false positive rate
of 20.4%. In contrast, Verismart has a significantly higher false positive rate of 39.3%.

7.4 Running Time

Next, we investigate the running time of Solid and compare it against Verismart. Table 4 gives
statistics about the running time of each tool. As expected, Semi-Solid is faster than Auto-Solid, as
it does not need to rely on the CHC solver to infer contract invariants. However, even Auto-Solid
is significantly faster than Verismart despite producing fewer false positives.

Result for RQ3 and RQ4: In its fully automated mode, Solid takes an average of 41
seconds to analyze each benchmark, and is significantly faster compared to Verismart

despite generating fewer false positives.

7.5 Impact of Type Inference

In this section, we perform an experiment to assess the impact of the type inference procedure
discussed in Section 5. Towards this goal, we consider the following two ablations of Solid:

• Solid-NoInfer: This is a variant of Solid that does not perform global type inference to infer
contract invariants. In particular, Solid-NoInfer uses true as the type refinement of all state
variables; however, it still performs local type inference.
• Solid-NoSoft: This variant of Solid differs from the type inference procedure in Fig. 12 in that
it treats all overflow checks as hard constraints.

In this experiment, we compare the false positive rate of each ablated version against Solid on
the Etherscan benchmarks. The results of this experiment are summarized in Table 5.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 4. Publication date: January 2022.



4:24 Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng

Table 6. Ablation study to evaluate rules from Section 4.3. This experiment is conducted on Etherscan

benchmarks that contain non-trivial mappings.

Solid-NoNested Solid

False positive rate 39.0% 23.5%

Importance of contract invariant inference. As we can see by comparing Solid against Solid-
NoInfer, global type inference is quite important. In particular, if we do not infer contract invariants,
the percentage of false positives increases from 24.7% to 48.7%.

Importance of soft constraints. Next, we compare the false positive rate of Solid against that of
Solid-NoSoft. Since Solid-NoSoft treats all overflow checks as hard constraints, type inference
fails if any potential overflow in the contract cannot be discharged. Since most contracts contain at
least one unsafe overflow, Solid-NoSoft fails for most benchmarks, meaning that all overflows are
considered as potentially unsafe. Thus, the false positive rate of Solid-NoSoft jumps from 24.7%
to 69.4%.

7.6 Impact of the Type Checking Rules from Section 4.3

In this section, we describe an ablation study to assess the impact of the more complex typing rules
from Fig. 11 for non-trivial mappings. Towards this goal, we consider the following ablation:

• Solid-NoNested: This variant of Solid uses the simpler refinement type checking rules from
Section 4.2 but it does not utilize the typing rules from Section 4.3 that pertain to complex data
structures.

In this experiment, we compare Solid-NoNested against Solid on those contracts from Ether-

scan that contain complex data structures. As shown in Table 6, the more involved typing rules from
Section 4.3 are quite important for successfully discharging overflows in contracts with non-trivial
mappings. In particular, without our refinement templates from Section 4.3, the false positive rate
increases from 23.5% to 39.0% on these benchmarks.

Result for RQ5: Our proposed typing rules from Section 4.3 for more complex data
structures and the proposed type inference algorithm from Section 5 are both important
for achieving good results.

8 LIMITATIONS

In this section, we discuss some of the limitations of both our type system as well as prototype
implementation. First, while logical qualifiers in SolType express relationships between integers
and aggregate properties of mappings, they do not allow quantified formulas. In principle, there
may be situations that necessitate quantified refinements to discharge arithmetic safety; however,
this is not very common. Second, Solid uses an off-the-shelf CHC solver to infer refinement type
annotations. Since this problem is, in general, undecidable, the CHC solver may return unknown
or fail to terminate in a reasonable time. In practice, we set a small time limit of 10 seconds per call
to the CHC solver. Third, Solid is designed with checking arithmetic overflows in mind, so the
proposed refinement typing rules may not be as effective for checking other types of properties.
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9 RELATED WORK

Smart contract correctness has received significant attention from the programming languages,
formal methods, and security communities in recent years. In this section, we discuss prior work
on refinement type systems and smart contract security.

Refinement types. Our type system is largely inspired by and shares similarities with prior work
on liquid types [Rondon et al. 2010, 2008; Vazou et al. 2014; Vekris et al. 2016]. For instance, our
handling of temporary contract violations via fetch/commit statements is similar to a simplified
version of the fold and unfold operators used in [Rondon et al. 2010]. However, a key novelty of
our type system is its ability to express and reason about relationships between integer variables
and aggregate properties of complex data structures (e.g., nested maps over struct) that are quite
common in smart contracts. Also, similar to the liquid type work, our system also performs type
inference; however, a key novelty in this regard is the use of soft constraints to handle programs
where not all arithmetic operations can be proven safe.

Smart contract verification. Many popular security analysis tools for smart contracts are based on
symbolic execution [King 1976].Well-known tools include Oyente [Luu et al. 2016], Mythril [Mythril
2020] and Manticore [Mossberg et al. 2019], and they look for an execution path that violates a given
property or assertion. In contrast to these tools, our proposed approach is based on a refinement
type system and offers stronger guarantees compared to bug finding tools for smart contracts.
To bypass the scalability issues associated with symbolic execution, researchers have also in-

vestigated sound and scalable static analyzers [Grech et al. 2018; Grossman et al. 2018; Kalra et al.
2018; Tsankov et al. 2018]. Both Securify [Tsankov et al. 2018] and Madmax [Grech et al. 2018] are
based on abstract interpretation [Cousot and Cousot 1977], which does not suffer from the path
explosion problem. ZEUS [Kalra et al. 2018] translates Solidity code into the LLVM IR and uses an
off-the-shelf verifier to check the specified policy [Rakamaric and Emmi 2014]. The ECF [Grossman
et al. 2018] system is designed to specifically detect the DAO vulnerability. In contrast to these
techniques, the focus of our work is on proving arithmetic safety, which is a prominent source of
security vulnerabilities.

Similar to Solid,Verismart [So et al. 2020] is also (largely) tailored towards arithmetic properties
of smart contracts. In particular,Verismart leverages a CEGIS-style algorithm for inferring contract
invariants. As we show in our experimental evaluation, Solid outperforms Verismart in terms of
false positive rate as well as running time.
Some systems [Grishchenko et al. 2018; Hirai 2017; Park et al. 2018; Permenev et al. 2020] for

reasoning about smart contracts rely on formal verification. These systems typically prove security
properties of smart contracts using existing interactive theorem provers [Team 2021], or leverage
temporal verification for checking functional correctness [Permenev et al. 2020]. They typically
offer strong guarantees that are crucial to smart contracts. However, unlike our system, all of them
require significant manual effort to encode the security properties and the semantics of smart
contracts. Furthermore, Solythesis [Li et al. 2020] inserts runtime checks into smart contract
source code to revert transactions that violate contract invariants. We note that this approach is
complementary to static verifiers such as Solid.

Verifying overflow/underflow safety. The problem of checking integer overflow/underflow in soft-
ware systems is a well-studied problem in the verification community. In particular, Astree [Blanchet
et al. 2003] and Sparrow [Oh et al. 2014] are both based on abstract interpretation [Cousot and
Cousot 1977] and are tailored towards safety-critical code such as avionics software. As we argue
throughout the paper, verifying arithmetic safety of smart contracts requires reasoning about
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aggregation properties over mappings; hence, standard numeric abstract domains such as the ones
used in Astree would not be sufficient for discharging over- and under-flows in Solidity programs.

CHC Solving. We are not the first to use CHC solvers in the context of refinement type checking.
For example, Liquid Haskell [Vazou et al. 2014] uses a predicate-abstraction based horn clause
solver for refinement type inference. However, in contrast to our work, Liquid Haskell does not
tackle the problem of MaxCHC type inference, which is critical for discharging the maximum
number of runtime overflow checks in smart contracts.
To the best of our knowledge, the only prior work that can potentially address our MaxCHC

problem is in the context of network repair. In particular, [Hojjat et al. 2016] formulate the problem
of repairing buggy SDN configurations as an optimization problem over constrained Horn clauses.
They generalize their proposed method to Horn clause optimization over different types of lattices,
and our type inference algorithmmay be viewed as an instantiation of their more general framework.
However, in contrast to their approach, our algorithm leverages domain-specific observations for
efficient (but potentially suboptimal) type inference in the context of smart contracts. In particular,
we use the fact that all soft constraints correspond to overflow checks that are guaranteed to be
satisfied (either because they are safe or we insert a runtime check) to check each soft constraint
independently.

10 CONCLUSION

We have presented SolType, a refinement type system for Solidity that can be used to prove the
safety of arithmetic operations. Since integers in smart contracts often correspond to financial assets
(e.g., tokens), ensuring the safety of arithmetic operation is particularly important in this context.
One of the distinguishing features of our type system is its ability to express and reason about
arithmetic relationships between integer variables and aggregations over complex data structures
such as multi-layer mappings. We have implemented our proposed type system in a prototype
called Solid, which also has type inference capabilities. We have evaluated Solid on 120 smart
contracts from two datasets and demonstrated that it can fully automatically discharge 86.3% of
redundant SafeMath calls in our benchmarks. Furthermore, Solid, even when used in a fully
automated mode, significantly outperforms Verismart, a state-of-the-art Solidity verifier, in terms
of both false positive rate and running time.
While the design of SolType was largely guided from the perspective of proving arithmetic

safety, our proposed type system could also be used for proving other types of properties. In future
work, we plan to explore the applicability of our refinement type system in other settings and
extend it where necessary.
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