
Apposcopy: Automated Detection of Android Malware
(Invited Talk)∗

Yu Feng, Isil Dillig
University of Texas at Austin, USA
{yufeng, isil}@cs.utexas.edu

Saswat Anand, Alex Aiken
Stanford University, USA

{saswat, aiken}@cs.stanford.edu

ABSTRACT
We present Apposcopy, a new semantics-based approach for
detecting Android malware that steal private information.
Apposcopy incorporates (i) a high-level language for specify-
ing malware signatures and (ii) a static analysis for deciding
if a given application matches a given signature. We have
evaluated Apposcopy on a corpus of real-world Android ap-
plications and show that it can effectively pinpoint malicious
applications that belong to certain malware families.

Categories and Subject Descriptors
D.4.6 [Software Engineering]: Security and Protection

General Terms
Security, Verification

Keywords
Android, Inter-component Call Graph, Taint Analysis

1. INTRODUCTION
As the most popular mobile operating system, the An-

droid platform is a growing target for mobile malware. To-
day, many of the malicious applications that afflict Android
users exploit the private information stored in a user’s smart-
phone. According to a recent report [3], nearly half of An-
droid malware are multi-functional Trojans that steal per-
sonal data stored on the user’s phone.

In response to the rapid dissemination of Android mal-
ware, there is a real need for tools that can automatically
detect malicious applications that steal private user informa-
tion. Two prevalent approaches for detecting such Android
malware are taint analyzers and signature-based detectors:

Taint analyses, such as [5], are capable of exposing ap-
plications that leak private user information. Unfortunately,
since many benign apps also need access to sensitive data to
perform their advertised functionality, taint analyses cannot

∗This work was sponsored by the Air Force Research Labo-
ratory, under agreement number FA8750-12-2-0020

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3225-5/14/11 ...$15.00.

automatically distinguish benign apps from malware, and a
security auditor must invest significant effort to determine
if a given information flow constitutes malicious behavior.

Signature-based malware detectors, including commer-
cial virus scanners, classify a program as malware if it con-
tains a sequence of instructions that is matched by a regular
expression. As shown in a recent study, malware detectors
that are based on syntactic low-level signatures can be eas-
ily circumvented using simple program obfuscations. Hence,
these malware signatures must be frequently updated as new
variants of the same malware family emerge.

In this paper 1, we present Apposcopy, a new semantics-
based approach for detecting Android malware that steal
private user information. Drawing insights from the re-
spective advantages of pattern-based malware detectors and
taint analyzers, Apposcopy incorporates (i) a high-level spec-
ification language for describing semantic characteristics of
Android malware families, and (ii) a powerful static analysis
for deciding if a given application matches the signature of a
malware family. The semantic, high-level nature of the sig-
nature specification language allows analysts to specify key
characteristics of malware families without relying on the
occurrence of specific instruction or byte sequences, making
Apposcopy more resistant to low-level code transformations.

The specification language provided by Apposcopy allows
specifying two types of semantic properties —control-flow
and data-flow—of Android applications. An example of a
control-flow property is that the malware contains a broad-
cast receiver which launches a service upon the completion
of some system event. An example of a data flow property
is that the malware reads some private data of the device
and sends it over the Internet.

To match the signatures specified in this language, Ap-
poscopy’s static analysis relies on two key ingredients. First,
we construct a new high-level representation of Android
applications called the inter-component callgraph (ICCG),
which is used to decide whether an Android application
matches the control flow properties specified in the signa-
ture. Second, Apposcopy incorporates a static taint anal-
ysis which is used for deciding whether a given application
matches a specified data-flow property.

We have evaluated Apposcopy on a corpus of real-world
Android applications and show that it can effectively and
reliably pinpoint malicious applications.

2. OUR APPROACH BY EXAMPLE
We illustrate Apposcopy’s basic approach using a simpli-

fied version of the GoldDream malware family.

1This is the abbreviated version of our paper in FSE2014. [6]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

DeMobile’14, November 17, 2014, Hong Kong, China
ACM 978-1-4503-3225-5/14/11
http://dx.doi.org/10.1145/2661694.2661697

13

1. GDEvent(SMS_RECEIVED).
2. GDEvent(NEW_OUTGOING_CALL).
3. GoldDream :- receiver(r),
4. icc(SYSTEM, r, e, _), GDEvent(e),
5. service(s), icc*(r, s),
6. flow(s, DeviceId, s, Internet),
7. flow(s, SubscriberId, s, Internet).

Figure 1: GoldDream signature (simplified)

2.1 GoldDream Signature in Apposcopy
To detect a sample of GoldDream malware, an analyst

first writes a signature of this malware family in our Datalog-
based language. In this case, the behavior of GoldDream is
captured by the specification in Figure 1. Here, lines 1-2
introduce a new user-defined predicate GDEvent(x) which
describes the events that the GoldDream malware listens for.
In particular, GDEvent(x) evaluates to true when x is either
SMS_RECEIVED or NEW_OUTGOING_CALL but to false otherwise.

Using this predicate, lines 3-7 describe the signature of
the GoldDream malware family. The signature uses three
kinds of predicates provided by Apposcopy:

Component type predicates, such as receiver(r) and
service(s), specify that r and s are BroadcastReceiver

and Service components in the Android framework.
Control-flow predicates, such as icc, which describes

inter-component communication. icc(SYSTEM, r, e, _) ex-
presses that the Android system invokes component r when
system event e happens, and icc*(r, s) means that com-
ponent r transitively invokes component s.

Data-flow predicates, such as flow(x, so, y, si), ex-
press that the application contains a flow from source so in
component x to a sink si in component y. Hence, lines 6-7
state that component s sends the device and subscriber id
of the phone over the Internet.

Therefore, according to the signature in Figure 1, an appli-
cation A belongs to the GoldDream malware family if (i) A
contains a broadcast receiver that listens for system events
SMS_RECEIVED or NEW_OUTGOING_CALL (lines 3, 4), and (ii)
this broadcast receiver starts a service which then leaks the
device id and subscriber id over the Internet (lines 5-7).

2.2 GoldDream Malware Detection
Given an Android application A and malware signature

S, Apposcopy performs static analysis to decide if app A
matches signature S. Apposcopy’s static analysis has two
important ingredients: (i) construction of the ICCG, which
allows determining the truth values of control-flow predi-
cates used in the signature, and (ii) static taint analysis,
which is used to decide the truth values of data-flow predi-
cates. In particular, the ICCG is a graph where nodes are
Android components and edges denote inter-component call
relations. On the other hand, Apposcopy’s taint analysis
identifies which designated sources(i.e., sensitive data) can
flow to which designated sinks(e.g., Internet, SMS message,
etc.). Since Apposcopy’s static analyses are both sound
and sufficiently precise, it can detect whether an applica-
tion matches the signature from Figure 1 with very few false
positives.

3. EVALUATION
To evaluate the effectiveness and accuracy of Apposcopy,

we performed three sets of experiments, including evaluation
on (i) known malware from the Android Malware Genome
project [1], (ii) Google Play apps, (iii) obfuscated malware.

Table 1: Evaluation of Apposcopy on malware from
the Android Malware Genome project.
Malware Family #Samples FN FP Accuracy
DroidKungFu 444 15 0 96.6%
AnserverBot 184 2 0 98.9%
BaseBridge 121 75 0 38.0%
Geinimi 68 2 2 97.1%
DroidDreamLight 46 0 0 100.0%
GoldDream 46 1 0 97.8%
Pjapps 43 7 0 83.7%
ADRD 22 0 0 100.0%
jSMSHider 16 0 0 100.0%
DroidDream 14 1 0 92.9%
Bgserv 9 0 0 100.0%
BeanBot 8 0 0 100.0%
GingerMaster 4 0 0 100.0%
CoinPirate 1 0 0 100.0%
DroidCoupon 1 0 0 100.0%

Total 1027 103 2 90.0%

(i) The data from Table 1 shows Apposcopy is able to
detect Android malware with high accuracy of overall 90.0%.
More specifically, the false negative rate is around 10.0% and
the false positive ratio is less than 0.2%.

(ii) To verify that our high-level signatures also differen-
tiate benign applications from real malware, we evaluated
Apposcopy on 11,215 apps from Google Play and Apposcopy
reported 16 of them as malware. We confirmed that those
16 apps are malware through VirusTotal [4].

(iii) In the third experiment, we obfuscated existing mal-
ware using the ProGuard [2] tool and compared the de-
tection rate of Apposcopy with other commercial anti-virus
tools on obfuscated versions of known malware. The result
shows that Apposcopy’s detection rate is 100.0% while the
detection rates of other tools range from 14.3% to 57.1%.

4. CONCLUSION
We presented Apposcopy, a static analysis approach for

detecting malware in Android apps. Malware that belong to
one family share a common set of characteristic behaviors,
which an auditor can encode through Apposcopy’s Datalog-
based malware specification language. Apposcopy performs
deep static analysis to extract data-flow and control-flow
properties of Android apps and uses these results to identify
whether a given app belongs to a known malware family.
Our experiments indicate that Apposcopy can detect mal-
ware with high accuracy and that its signatures are resilient
to many kinds of program transformations.

5. REFERENCES
[1] Android malware genome project.

http://www.malgenomeproject.org/.

[2] ProGuard. http://proguard.sourceforge.net/.

[3] Q2 IT evolution threat report.
http://tinyurl.com/lcg3ojb.

[4] VirusTotal. https://www.virustotal.com/en/.

[5] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, pages 393–407,
2010.

[6] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based detection of android malware through
static analysis. In SIGSOFT FSE, 2014.

14

