Singularity: Pattern Fuzzing for Worst Case Complexity

Jiayi Wei
The University of Texas at Austin
Austin, Texas, USA
wjydzhl@gmail.com

Kostas Ferles
The University of Texas at Austin
Austin, Texas, USA
kferles@cs.utexas.edu

ABSTRACT

We describe a new blackbox complexity testing technique for deter-
mining the worst-case asymptotic complexity of a given application.
The key idea is to look for an input pattern —rather than a concrete
input— that maximizes the asymptotic resource usage of the tar-
get program. Because input patterns can be described concisely as
programs in a restricted language, our method transforms the com-
plexity testing problem to optimal program synthesis. In particular,
we express these input patterns using a new model of computation
called Recurrent Computation Graph (RCG) and solve the optimal
synthesis problem by developing a genetic programming algorithm
that operates on RCGs.

We have implemented the proposed ideas in a tool called Sin-
GULARITY and evaluate it on a diverse set of benchmarks. Our
evaluation shows that SINGULARITY can effectively discover the
worst-case complexity of various algorithms and that it is more scal-
able compared to existing state-of-the-art techniques. Furthermore,
our experiments also corroborate that SINGULARITY can discover
previously unknown performance bugs and availability vulnerabili-
ties in real-world applications such as Google Guava and JGraphT.

CCS CONCEPTS

« Software and its engineering — Software performance; Soft-
ware testing and debugging; « Security and privacy — Denial-of-
service attacks;

KEYWORDS
Complexity testing; optimal program synthesis; fuzzing; genetic
programming; performance bug; availability vulnerability

ACM Reference Format:

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. 2018. Singu-
larity: Pattern Fuzzing for Worst Case Complexity. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4—
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3236024.3236039

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5573-5/18/11.

hitps://doi.org/10.1145/3236024.3236039

Jia Chen
The University of Texas at Austin
Austin, Texas, USA
grievejia@gmail.com

Yu Feng
The University of Texas at Austin
Austin, Texas, USA
yufeng@cs.utexas.edu

Isil Dillig
The University of Texas at Austin
Austin, Texas, USA
isil@cs.utexas.edu

1 INTRODUCTION

Reasoning about a program’s worst-case complexity is an important
problem that has many real-world applications, including perfor-
mance bug detection and identification of security vulnerabilities.
For instance, automated complexity analysis can identify cases
where an algorithm’s expected worst-case complexity does not
match that of its implementation, thus indicating the presence of
a performance bug. Such techniques are also useful for detecting
availability vulnerabilities that allow attackers to cause denial-of-
service (e.g., through algorithmic complexity attacks [5, 9, 19, 37]).

While there is a large body of literature on worst-case complex-
ity analysis [6, 16, 17, 29], most of these techniques do not produce
worst performance inputs, henceforth called WPIs, that trigger the
worst-case performance behavior of the target program. Such WPIs
can be used to debug performance problems and confirm the pres-
ence of security vulnerabilities. Furthermore, WPIs can shed light
on the cause of worst-case executions and help programmers write
suitable sanitizers to guard their code against potential DoS attacks.

In this paper, we propose a new black-box complexity testing
technique to efficiently generate inputs that trigger the worst-case
performance of a given program. The key insight underlying our
approach is that WPIs almost always follow a specific pattern that
can be expressed as a simple program. For instance, to trigger the
worst-case performance of an insertion sort algorithm, the input ar-
ray must be in reverse sorted order, which can be programmatically
generated by appending larger and larger numbers to an empty list.

Based on this observation, our key insight is to transform the
complexity testing problem to a program synthesis problem, where
the goal is to find a program that expresses the common pattern
shared by all WPIs. In particular, given a target program ¥ whose
resource usage we want to maximize, our algorithm synthesizes
another program G, called a generator, such that the outputs of G
correspond precisely to the WPIs of . Since the common pattern
underlying WPIs can often be represented using small generator
programs, this approach allows us to discover WPIs very efficiently.

In the simplest case, a generator G consists of an initial input seed
s together with a function f whose output is larger than its input.
Since size(f(s)) > size(f/(s)) whenever i > j, our method can gen-
erate arbitrarily large inputs by applying f sufficiently many times.
For instance, the input pattern ([0], f = Ax.append(x, last(x))) cor-
responds to an infinite sequence of inputs of the form {[0], [0, 0],
[0,0,0],...}. Thus, we can determine the worst-case complexity of

https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3236024.3236039

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

the target program by using the synthesized generator to obtain
many WPIs and then fitting a curve through these data points.

The problem of finding patterns that characterize WPIs corre-
sponds to an optimal synthesis problem, where the goal is to synthe-
size a generator G such that the values produced by G maximize the
target program’s resource usage. Our method solves this optimal
synthesis problem by performing feedback-guided optimization
using genetic programming. Specifically, we represent generators
using a set of DSLs called Recurrent Computation Graphs (RCG) that
are (a) expressive enough to model most input patterns of interest
and yet (b) restrictive enough to make the search space manageable.
Given this representation, our method looks for an optimal RCG by
applying genetic operators (e.g., mutation, crossover) to existing
RCGs and biasing the search towards generators that maximize the
target program’s resource usage.

We have implemented these ideas in a tool called SINGULARITY,
publicly available on Github [36]. We evaluate SINGULARITY’s ef-
fectiveness on several benchmarks, including those from previous
literature, real-world applications, and challenge problems from
the DARPA STAC program '. Our experiments demonstrate SINGU-
LARITY s effectiveness at finding inputs that trigger the worst-case
performance of various textbook algorithms whose average and
worst-case complexity are different. Our experiments also demon-
strate the advantages of our approach over (a) SLowFuzz, a state-of-
the-art fuzzing technique for finding availability vulnerabilities, and
(b) WIsE, a complexity testing technique based on dynamic symbolic
execution. Finally, our experiments corroborate that SINGULARITY
can find previously unknown performance bugs in widely-used
Java applications such as Google Guava [15] and JGraphT [18].

In all, this paper makes the following key contributions:

e We propose a new fuzzing technique for automatically finding
inputs that trigger a program’s worst-case resource usage.

o We introduce the notion of input patterns and show how to reduce
the complexity testing problem to an optimal program synthesis
problem, where the goal is to find an input pattern that maximizes
the target program’s resource usage.

e We introduce a new model of computation called recurrent com-
putation graphs (RCG) for expressing input patterns. This RCG
model can be instantiated in different ways to obtain a domain-
specific language for generating inputs of many different types.

o We show how to solve the underlying optimal synthesis problem
using genetic programming. Our method defines new genetic
operators over RCGs and guides the search towards those input
patterns that maximize resource usage.

o We implement our method in a tool called SINGULARITY and
evaluate it on a diverse set of benchmarks. Our experiments
show the benefits of our approach over prior techniques and
demonstrate that SINGULARITY can discover interesting security
vulnerabilities and performance bugs.

2 OVERVIEW

In this section, we present our problem definition and give a brief
overview of our approach through a simple motivating example.

! The STAC program aims to develop program analysis techniques for finding avail-
ability and confidentiality vulnerabilities.

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig

def quick_sort(xs):
if(xs.length <= 1):
return xs
pivot = xs[xs.length/2]
left, middle, right = []
for x in xs:
if(x==pivot):
middle.append(x)
elif(x<pivot):
left.append(x)
else:
right.append(x)
left = quick_sort(left)
right = quick_sort(right)
return concat(left, middle, right)

Figure 2.1: QuickSort with middle pivot selection

2.1 Problem Definition

Given a target program %, our goal is to find an input pattern that
triggers ’s worst-case resource usage. As mentioned in Section 1,
we represent input patterns as generator programs G that produce
an infinite sequence of increasingly larger inputs for P.

Definition 1. (Generator) Given a program # with signature
7 — 7/, a generator G for P is a program with signature unit —
Stream(r). We write G; to indicate the i’th element in the stream
produced by G and require that size(G;) > size(Gj) whenever i > j.

Because our goal is to maximize the resource usage of a given
program, we need a way to measure the size of an input and its
corresponding resource usage. Thus, a problem configuration in our
setting consists of a triple (P, X, ¥), where P is the target program
with signature 7 — 7’, ¥ is a metric that defines the size of any
value of type 7, and ¥ is a function of type ¢ — R that measures
the resource usage of # on any input of type 7. In particular, we
write ¥(s) to denote the resource usage of # on a concrete input
s of type 7. We also use the notation G<, to denote the largest
element G; such 3(G;) < n.

To compare the asymptotic resource usage of two patterns, we
define the following binary relation > on a pair of generators:

Definition 2. (Relation >) A generator G is asymptotically better
than another generator G/, written G > G’, iff the resource usage
of G on the target program exceeds that of G’ for all sufficiently
large sizes:

Vi > i ¥(G<n) > ¥(GL,)

Given a problem configuration (P, X, ¥), we now formalize our
goal as the complexity testing problem:

Definition 3. (Complexity Testing) The goal of the complexity
testing problem is to find an input pattern such that no other pattern
is asymptotically better than it. That is, we want to find a G where:

6.6 >¢G

2.2 Motivating Example

We now informally describe our complexity testing technique on
the simple quickSort example shown in Figure 2.1 as Python code.
For concreteness, let us assume that generators are expressed in a

Singularity: Pattern Fuzzing for Worst Case Complexity

= (C,Ax.LE)
= IE|LE
: Int | List
= Int| x| plus(IE, IE) | minus(IE, IE)
| times(IE, IE) | length(LE)
LE := List|x | append(LE,E) | prepend(E, LE)
| concat(LE, LE)
Figure 2.2: A DSL where prepend/append adds an element to
the head/tail of a list, respectively.

T
=@

Figure 2.3: Output Y is obtained by repeatedly applying func-
tion F to seed value C.

EQH‘J"U
Il

simplified DSL shown in Figure 2.2. Specifically, a program G in
this language is a tuple (¢, f) where c is a constant seed value and
f is a function that operates over a list of integers. As illustrated
in Figure 2.3, we can compute an infinite sequence of values from
(¢, f) by repeatedly applying f to ¢, where the i’th value y; in the
sequence is given by f¥(c), denoting i successive applications of f
to value c.

Using the DSL from Figure 2.2, we can express the worst-case
pattern for the quickSort implementation from Figure 2.1 as follows:

G* = ([0], Ax.append(prepend(length(x) + 1,x), length(x)))
This program produces the following sequence of inputs:
[0],[2,0,1],[4.2,0,1,3],[6,4,2,0,1,5],...

Observe that these inputs indeed trigger the worst-case running
time of the quickSort implementation from Figure 2.1, because (a)
the smallest value in each list of the sequence is the middle element,
and (b) the quicksort implementation Figure 2.1 chooses the middle
element as its pivot.

We now explain how SINGULARITY finds this pattern G* using
genetic programming (GP). SINGULARITY starts with a population
of randomly-generated programs that conform to the context-free
grammar given in Figure 2.2 and evaluates the fitness of each pro-
gram. Since our goal is to maximize running time, the fitness func-
tion assigns a higher score to programs that take longer. For simplic-
ity, let us assume that we evaluate running time on some particular
input size, such as arrays of length 100.

Even though it is highly unlikely that the target generator G*
occurs in the initial population P, it might be the case that P con-
tains several useful, albeit suboptimal, functions such as fi =
Ax.append(x, length(x)) and fo = Ax.prepend(length(x), x). These
functions are useful since the desired pattern can be obtained by
mixing these functions using genetic operators.

For the next iteration, the genetic programming algorithm ran-
domly picks “fit” generators from the previous iteration. For exam-
ple, the input patterns ([0], f1) and ([0], f2) are likely to be selected
because they have higher than average resource usage. SINGULAR-
ITY then uses these input patterns to generate a new population
of candidate patterns by combining them using genetic operators,
such as mutation and crossover. For example, we can obtain the

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Figure 3.1: An RCG with c internal states and m output states.

following program f3 from fi and f; using the crossover operation:
Ax.append(prepend(length(x), x), length(x))

In particular, crossover replaces a random sub-expression in one
program with a sub-expression taken from another program. In this
case, we can obtain f3 from fj, f2 by substituting the sub-expression
x in fi with the entire body of f2. Furthermore, f3 results in higher
resource consumption compared to fi and f.

We continue the process of generating new populations and
monitor both their maximal and average performance. In gen-
eral, average performance will keep increasing over generations
and, at some point, SINGULARITY will generate the desired pro-
gram G* from ([0], f3) by mutating the sub-expression length(x)
to length(x) + 1. Since ([0], f*) can be used to generate an input
of size 100 that achieves the maximal possible resource usage, our
algorithm will eventually terminate with the desired input pattern
G*. Observe that we can now determine the worst-case complexity
of this quicksort implementation by measuring the running time of
quickSort on the input values generated by G* and using standard
techniques to fit a curve through these data points.

3 RECURRENT COMPUTATION GRAPHS

In this section, we introduce recurrent computation graphs (RCGs)
as a family of DSLs for representing generators. Intuitively, we
choose RCGs as our computation model because they are expressive
enough to capture most input patterns of interest that arise in
practice, but they are also restrictive enough to keep the search
space manageable.

Definition 4. (Recurrent Computation Graph) A recurrent com-
putation graph G is a triple (I, ¥, 0) where I is a tuple of ini-
tialization expressions, ¥ is a tuple of update expressions (where

|Z] = |F]), and O is a tuple of output expressions.

Before considering the formal semantics of RCGs, we first explain
them informally: An RCG (7, ¥, O) is a generalization of the simple
computational model described in Section 2.2. As illustrated in
Figure 3.1, instead of using one internal state, an RCG generates an
infinite sequence of values by maintaining |7 | internal states that
are initialized using J and updated using . An RCG also uses an
output layer O to transform its internal states before outputting
them. This decoupling allows the number of internal states to be
different from the number of arguments that the target program

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

si[0] = [Zi]
silt + 1] = [Fillls1 — salt], - - ., sc o selt]]

y;[t] = [Oj][s1 — silt], ... sc = selt]]
where1 <i<c=|fl|and1<j<m=]|0]|

[(Z.7.0)] = [ilt].. ... ym() | £ € [0, c0]]
Figure 3.2: Recurrent computation graph semantics

takes. As before, we can generate the k’th value in the infinite
sequence by updating the internal states exactly k times.

RCG semantics. More formally, the semantics of an RCG (7, 7, O)
is given by the rules shown in Figure 3.2. Here, s;[t] represents the
i’th internal state at time step ¢, and y;[t] corresponds to the i’th
output value at time ¢. As shown in Figure 3.2, 5;[0] is computed
using the i’th initialization expression in 7, and s;[# + 1] is obtained
from (s1[t], . .., sc[t]) by applying the update function ¥;. Finally,
yj[t] is obtained from the internal state at time ¢ by applying the
output expression O to (s[t], .. ., sc[t]). The semantics of the RCG
is then given by the infinite sequence of values (y1[t], ..., ym[t])
fort =0,1,2,... Given an RCG G and a value y, we say that y is in
the language of G, written L(G), if y = (y1[t], . .., ym[¢]) for some
time step ¢.

RCG expressions. Our definition of recurrent computation graphs
intentionally does not fix the expression language over which
I, F, O are specified. To maximize the flexibility of our approach,
RCGs are parametrized by a set of components C over which the ini-
tialization, update, and output expressions are constructed. Recall
that both ¥ and O are functions, and their arguments correspond
to the RCG’s internal states. Hence, expressions e for ¥ and O can
be generated according to the following grammar:

e =s; | c| fle,...,ex)
where s; represents the i’th internal state, c is a constant value,
and f € C is a function of arity k. Since initialization expressions
are required to be constants, init follows a similar grammar except
that we do not allow initialization expressions to refer to the RCG’s
internal states.

Example 1. The quickSort pattern from Section 2.2 can be ex-
pressed as the following 2-state RCG using the components plus,
append, prepend, inc, as well as integer constants {0, 1, 2}.

I =(1,[o0])
F = (plus(s1, 2), append(prepend(inc(s1), s2), 51))
0= S2

The first few iterations of the pattern’s evaluation are shown
below, where we use (I>), (<), (+) to denote append, prepend, and
plus respectively:
si[0] =1 s2[0] = [0]
si[1]=1+2=3 s[1] = (inc(1) < [0]) > 1 =[2,0,1]
s1[2] =3+2=5 s[2] = (inc(3) < [2,0,1]) > 3)) = [4,2,0,1,3]

In the previous example, the output state was exactly the same as

one of the internal states. However, as illustrated by the following
example, this is not always the case.

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig

Example 2. Consider the following sequence of inputs: [], [1, 1],
[1,2,1,2],[1,2,3,1,2,3], [1,2,3,4,1,2,3,4], ... This input pattern
can be represented using the following RCG:

I=(.[0

F = (plus(ss, 1), append(sz, s1))
O = concat(sz, s2)

The output here is obtained by concatenating two copies of the
input state s; however, there is no simple way to express this
pattern without distinguishing between internal and output states.

4 COMPLEXITY TESTING AS DISCRETE
OPTIMIZATION

In this section, we formulate the complexity testing problem in-
troduced in Section 2.1 as an optimal program synthesis problem °.
Towards this goal, we first introduce the concept of a measurement
model for assigning scores to recurrent computation graphs:

Definition 5. (Ideal measurement model) Given an RCG G, an
ideal measurement model M maps G to a numeric value such that:

VG.G'. (G > G — M(G) > M(G) (4.1)

In other words, an ideal measurement model M assigns a higher
score to G compared to G’ if G induces asymptotically worse be-
havior of the target program compared to G’. Using this notion, we
now formulate complexity testing in terms of the following pattern
optimization problem:

Definition 6. (Pattern Optimization) Given an ideal measure-
ment model M, the pattern optimization problem is to find an RCG
that maximizes M, i.e., find the solution of:

argmax M(G) (4.2)
G

Because RCGs correspond to programs, Definition 6 is a form of
optimal program synthesis problem, where the goal is to maximize
asymptotic resource usage. The following theorem states that the
pattern optimization problem is equivalent to our definition of the
complexity testing problem from Section 2.1:

THEOREM 4.1. Eqn. 4.2 gives a solution to Definition 3.

Proof: Suppose pattern G satisfies Eqn. 4.2. If G is not a solution to
Definition 3, then we have some G’ such that G’ > G. Using Eqn. 4.1,
we know that M(G') > M(G), which means G is not the solution to
Egn. 4.2 (i.e., contradiction). O

Theorem 4.1 is useful because it allows us to turn the complexity
testing problem into a discrete optimization problem, assuming that
we have access to an ideal measurement model M. However, due
to the black-box nature of our approach, M is difficult to obtain
in practice. In particular, the ideal measurement model requires
reasoning about the asymptotic resource usage of the program
on all inputs of a given shape, but this is clearly a very difficult
static analysis problem. Thus, as a proxy to this idealized metric, we
instead estimate the quality of an input pattern by using an empirical
measurement model M”. Specifically, a measurement model M"

%In optimal program synthesis [2] the goal is to synthesize a program that not only
satisfies the specification but also maximizes the value of some objective function

Singularity: Pattern Fuzzing for Worst Case Complexity

evaluates the quality of a generator G by running the input program
% on inputs up to size 7. In the remainder of this paper, we use the
following empirical model as a proxy for Definition 5:

Definition 7. (Empirical Measurement Model) Our empirical
measurement model, denoted M", evaluates an input pattern by
returning the maximum resource usage among all inputs whose
size does not exceed bound 7. More formally:

MY G) = ¥(x) (4.3)

max
x€ L(GNZ(x)<h

The following theorem states the conditions under which M7
is a good approximation of the ideal model:

THEOREM 4.2. M™ is an ideal measurement model (i.e., satisfies
equation 4.1) if i is sufficiently large and we have:

lim ¥(G<p) = oo
n—oo

Proof: We show that G > G’ implies M™(G) > M™(G’) under the
conditions stated in the theorem. Suppose G > G’. From Definition 2,
this means there exists n1 such thatVn > ni. ¥(G<n) > ¥(GL).
Because we assume all patterns’ resource usage increase to infinity as
the input size grows, we can show that there exists some ny such that
Vi > np. M™(G) = ¥(G<n) and M™(G') = ¥(GL,,) using Eqn. 4.3.
Thus, for i > max(ny, nz), we have MYG) > MUG). O

+

5 FINDING OPTIMAL RCG USING GP

We now describe a genetic programming (GP) algorithm for solving
the discrete optimization problem from Section 4. We first present
the top-level algorithm and then explain its subroutines.

5.1 Algorithm Overview

Our pattern maximization algorithm is summarized in Algorithm 1
and follows the typical structure of genetic programming. Specifi-
cally, we start with a randomly-generated initial population of RCGs
(lines 2-3) and repeatedly create a new population by combining
the fittest individuals from the old population.

To create a new population pop’, we create m new RCGs by
combining individuals from the existing population pop — this
corresponds to the for loop at lines 6-14. A new individual G is
created by randomly choosing a genetic operator op (line 7) and
combining op.arity individuals from the current population. While
there are several different techniques that can be used to select
individuals from the population, our algorithm uses the so-called
deterministic tournament method (lines 8-9). Specifically, we sample
K RCGs and choose the RCG with the best fitness as the winner. *

Given the new RCG G created at line 10, we evaluate G’s fitness
(line 11) using a fitness function that we discuss in more detail
in Section 5.3. If G is fitter than the previously fittest RCG, we
then update best to be G. The algorithm terminates with solution

3K is a hyper-parameter called tournament size and controls the evolution pressure of
the GP process: When K is set to 1, there is no evolution pressure and all individuals
from the population, regardless of their fitness, have the same chance to be picked by
the tournament method; hence, in this case, GP degenerates to random search. When
K is set to the size of the whole population, only the best individual of each population
can be selected to participate in the creation of new individuals.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Algorithm 1 Pattern Maximization using GP

Input: gpOps - the set of generic operators to use

Input: m - population size

Input: K - tournament size

Input: 7 - size bound for performance measurement.
Input: y, a - hyper-parameters used for calculating fitness
Output: the pattern with the highest fitness score so far

1: procedure FINDOPTIMALRCG(gpOps, m, K, i, i1,)
2 pop « initPopulation(m)

3 best < findBest(pop)

4 while not converged() do

5: pop” — 0

6 for i from 1 to m do

7 op « randomPick(gpOps)

8 for j from 1 to op.arity do

9 args; < tournament(pop, K)

10: G « op(args)

11: G fitness — M™(G) - e~(size @)/)" . geost(G)
12: if G fitness > best.fitness then

13: best — G

14: pop’ — pop’U{G}

15: pop «— pop’

16: return best

append Mutation Point

prepend N append

51/ \s2 & prepend/ inc
g /N
1 s2

- < . s v st
iinc } Mutation e

| Result

Random expression

Figure 5.1: Mutation operator

best if there has been no fitness improvement on best for many
generations (line 4).

5.2 Genetic Operators
We now describe the genetic operators used in Algorithm 1.

Mutation operator. The mutation operator is used to maintain
diversity from one generation to the next and prevents the algo-
rithm from converging on a local - rather than global — optimum.
It creates an RCG G’ from an existing RCG G by applying modifica-
tions to a node in the abstract-syntax tree (AST) representation of
G. Specifically, we first randomly choose an initialization, update,
or output expression e and then select a random node n, called
the mutation point, in e. Our mutation operator then replaces the
sub-tree T rooted at n with a randomly generated AST with the
same type as T. Figure 5.1 illustrates this process.

Crossover operator. The crossover operator is used to combine
existing members of a population into new individuals. Specifically,

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

append Cross Point 1 append
A 4 ..
prepend 13 prepend/ “inc

ANPE 2NN
s! 1 s2

s LSl
Result 1

append Crossover

append
s AN

| é s2 "_q ':
' Result 2

)

Swap

TS Cross Point 2
Figure 5.2: Crossover operator

given RCGs G and G, we choose a mutation point n of type 7 in
G1 as well as another mutation point ny of the same type 7 from Gs.
We then create two new RCGs by swapping the sub-trees rooted
at n; and ny and randomly pick one of the two new RCGs. The
crossover operation is illustrated in Figure 5.2.

Reproduction operator. The reproduction operator is just an iden-
tity function - it simply copies the selected individual into the next
generation. Reproduction is used to maintain stability between
generations by preserving the fittest individuals.

ConstFold operator. The ConstFold operator is similar to reproduc-
tion except that it also performs light-weight constant folding on
the AST. Using ConstFold allows continuous evolution of constants
used in the RCGs without growing total AST size.

5.3 Fitness Function

Since our goal is to find an RCG that maximizes the target program’s
resource usage, the simplest implementation of the fitness function
simply uses the measurement model M. However, as standard
in genetic programming, the fitness function does not have to be
exactly the same as the optimization objective. We design our fitness
function to have the following three properties:

(1) It should be consistent with the measurement model M, mean-
ing that G is considered fitter than G’ if M(G) > M(G’).

(2) It should prevent individuals from evolving to unboundedly
large programs by penalizing RCGs with very large AST size.

(3) When two RCGs have similar size and resource usage, it should
use the Occam’s razor principle to prefer the simpler one.

Based on these criteria, our fitness function F is defined as:
F(G) = MA(G) - e~ &))" . yeost(G)

where size measures the total AST size of G, and cost is a measure
of the complexity of the RCG . Both y and « are tunable hyper-
parameters. Specifically, p is used for bloat control: If the AST size
of G is smaller than p, then e~ 6126)/ i5 close to 1; but, when
size(G) > p, the fitness quickly decays to 0. The hyper-parameter
a must be chosen as a value less than 1 and determines the penalty
factor associated with complexity.

4We define complexity in terms of the constants used in the RCG. Intuitively, the larger
the constants used in the RCG, the higher the cost.

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig

6 IMPLEMENTATION

We have implemented the proposed method in a tool called SiNGU-
LARITY, which consists of approximately 6,000 lines of Scala code,
and made it publicly avaibale on Github [36]. In what follows, we
discuss important design and implementation choices underlying
SINGULARITY.

Resource usage measurement. Recall that our problem defini-
tion and fitness evaluation function use a resource measurement
function ¥. We implement ¥ by counting the number of executed
instructions rather than measuring absolute running time, as the
latter strategy is too noisy due to factors such as cache warm-up,
context switching, garbage collection etc.

To measure the executed number of instructions, we perform
static instrumentation using the Soot framework [33] for Java pro-
grams and the LLVM framework [20] for C/C++ programs. In more
detail, we initialize an integer counter when the application starts
and increment it by one after each instruction. Our implementation
also provides a lighter-weight version of this instrumentation that
only increments the counter at method entry points and loop head-
ers. In practice, we found this alternative strategy to work quite
well, as it strikes a good balance between precision and overhead.
Unless stated otherwise, all of our benchmarks are instrumented
using this lightweight strategy.

RCG components. Recall from Section 3 that our recurrent com-
putation graphs are parameterized by a set of components that are
used to construct expressions. Our implementation comes with a
library of such components for most built-in types and collections.
For instance, the component library for integers include methods
such as inc, dec, plus, minus, times, mod etc. Similarly, for lists,
we have generic components such as append, prepend, access,
concat, length and so forth. For graphs, we have components that
represent empty graphs as well as operations that add nodes and
edges (see Table 4). Since our framework is fully extendable, the
user can apply SINGULARITY to programs that take custom data
types 7 by providing new components that operate over 7.

Parameter tuning. As mentioned earlier, genetic programming
algorithms have many tunable parameters such as population size,
tournament size, threshold p and cost penalty factor a used in
the fitness function etc. Unfortunately, these parameters are often
hard to configure manually due to the complex dynamics of ge-
netic programming and the intricate interaction between different
parameters. To address this problem, we developed an automatic
parameter generator which samples these parameters from a joint
distribution. When we run SINGULARITY multiple times on a prob-
lem, we always use different parameter sets sampled from this joint
distribution. In our experience, this strategy increases the likelihood
that SINGULARITY will find the desired worst-case pattern.

7 EVALUATION

To evaluate the usefulness of SINGULARITY, we design a series of
experiments that are intended to address the following questions:

(1) Is SiINGULARITY useful for revealing the worst-case complexity
of a given program?

(2) How does SINGULARITY compare with state-of-the-art testing
tools that address the same problem?

Singularity: Pattern Fuzzing for Worst Case Complexity

Algorithm Name Best Case | Worst Case Found

Worst?
Optimized Insertion Sort O(n) o(n?) v
Quick Sort O(nlogn) o(n?) v
Optimized Quick Sort O(nlogn) 0(n?) v
3-way Quick Sort ©(nlogn) 0(n?) v
Sequential Search o(1) 0(n) v
Binary Search o(1) O(log n) v
Binary Search Tree Lookup o(1) O(n) v
Red-Black Tree Lookup o(1) ©(log n) v
Separate Chain Hash Lookup o(1) O(n) v
Linear Probing Hash Lookup o(1) 0(n) v
NFA Regex Match O(m+ n) O(mn) v
Booyer-Moore Substring O(m+ n) O(mn) v
Prim Minimum Spanning Tree | O(V + E) ©(ElogV) v
Bellman-Ford Shortest Path o(1) O(V(V +E)) v
Dijkstra Shortest Path o(1) O(ElogV) v
Alternating Path Bipartite e(V) O(V(V +E)) v
Hopcroft-Karp Bipartite o) O(EVV) X

Table 1: Evaluation on textbook algorithms.

(3) Is SiNGULARITY useful for detecting algorithmic complexity
vulnerabilities and performance bugs in real world systems?

Unless stated otherwise, experiments are conducted on an Intel
Xeon(R) computer with an E5-1620 v3 CPU and 64G of memory
running on Ubuntu 16.04.

7.1 Asymptotic Bound Analysis

In this section, we evaluate SINGULARITY on standard algorithms,
such as sorting, searching, graph algorithms, and string match-
ing, that are taken from a widely-used algorithms textbook by
Sedgewick and Wayne [28]. The goal of this experiment is to deter-
mine whether SINGULARITY can identify the worst-case asymptotic
complexity of these algorithms.

To ensure the benchmarks are nontrivial, we only focus on al-
gorithms whose worst-case running time is known to us and is
different from their best cases. Based on these criteria, we obtain a
total of 17 algorithms. For each of them, we run SINGULARITY for a
total time of three hours and restart fuzzing with a different ran-
dom seed whenever the fitness has no improvement for more than
150 generations. Finally, we determine worst-case complexities by
using input patterns that maximize resource usage at i1 = 250.

The results of this experiment are summarized in Table 1. The
first three columns of this table provide the name of the algorithm
along with its corresponding best-case and worst-case asymptotic
performance, and the final column shows whether SINGULARITY is
able to trigger the expected worst-case complexity. To determine
whether a pattern’s worst-case complexity has been found, we
measure its performance at different input sizes and try to fit a
linear relationship between the theoretical worst-case performance
and the actual performance. If the data show a linear trend and the
R? metric is greater than 0.95, we conclude that SINGULARITY is
able to generate inputs with the desired worst-case complexity.

As we can see from this table, SINGULARITY can trigger the worst-
case behavior in 16 of the 17 cases. For the Hopcroft-Karp bipartite
matching algorithm, the inputs generated by SINGULARITY trigger
O(V + E) complexity rather than the expected O(EVV) complexity

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

because the worst-case pattern cannot be represented using our
standard set of graph components listed in Table 4.

7.2 Comparison Against WISE

To explore how SINGULARITY compares against other complexity
testing techniques, we perform a comparison between SINGULARITY
and WIsE [4]. Unlike SINGULARITY, WISE is a white-box testing tool
based on dynamic symbolic execution. Specifically, WIsE proceeds
in two phases: In the first phase, it performs exhaustive search
on small inputs to learn so-called branch policy generators, which
exercise worst-case execution paths. In the second phase, WIsE uses
the output of the first phase to prune program paths that do not
conform to the learnt branch policy generator.

We perform this experiment on the benchmarks that are used
for evaluating WIsE [4]. We give both tools a time limit of three
hours and compare the performance of each benchmark on the
inputs generated by SINGULARITY and WISE. Specifically, we “train”
WISE on the same training size reported in their paper [4] and use
both tools to generate inputs up to size n for n € {30,500, 1000}.
Specifically, we use n = 30 to match the value used in the original
WISE paper. We also report n = 500 and n = 1000 to demonstrate
the advantages of our approach over WIsE.

The results of this experiment are summarized in Table 2. Here,
the symbol X indicates that the tool failed to generate any inputs
within the 3 hour time-limit. Otherwise, the number indicates the
worst-case performance (in terms of instruction count) of the algo-
rithm on inputs generated by each tool.

The main take-away from this experiment is that SINGULARITY
and WIsE trigger roughly the same performance behavior in all
cases where WIsE does not time out (i.e., generates an input within
the 3-hour time limit). However, as we increase the value of n,
WISE fails to generate inputs on more and more benchmarks. In
particular, WISE can trigger the worst-case behavior on 8 out of the
9 benchmarks for n = 30, but this number drops to 6 for n = 500
and to 3 for n = 1000. Specifically, W1sE fails to generate any inputs
for large values of n because all paths explored by the concolic
execution engine within the time limit are pruned by the generator,
meaning that WisE fails to find any inputs that can trigger worst-
case behavior. In contrast, by looking for input patterns rather than
concrete inputs, SINGULARITY can scale to much larger values of n.

7.3 Comparison Against SLowFuzz

In our next experiment, we compare SINGULARITY against SLow-
Fuzz [26], a state-of-the-art fuzzing tool for finding availability vul-
nerabilities. Similar to our approach, SLowFuzz performs resource-
usage-guided evolutionary search but generates concrete inputs, as
opposed to input patterns, that maximize resource usage.

We compare SINGULARITY with SLowFuzz in terms of scalability
and the quality of the generated inputs. Similar to Section 7.2, we
assess scalability by running each tool on increasing input sizes
ranging from 64 bytes to 2K bytes. To evaluate the quality of the
results, we run both tools 30 times with a 2-hour time limit for each
run and compare the largest resource usage obtained by each tool.
To reduce the time required to perform this experiment, we run
both tools on an HPC cluster with Intel Xeon Phi 7250 CPU (68
cores at 1.4GHz) and 96G RAM running CentOS 6.3.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig

Benchmark size = 30 size = 500 size = 1000
WISE SINGULARITY WISE SINGULARITY WIsE SINGULARITY
SortedList insert 262 262 4022 4023 X 8023
Heap insert (JDK 1.5) 160 160 280 281 310 311
RedBlackTree insert 221 221 403 404 455 456
QuickSort (JDK 1.5) 3,522 3,638 X 470,232 X 1,815,732
BinarySearchTree insert 205 212 3,495 3,510 X 7,010
MergeSort (JDK 1.5) 3,922 3,954 113,771 107,601 251,039 238,999
Bellman-Ford (adjacency matrix) | 303,152 333,357 X 1.94 x 10° X 1.55 x 1010
Dijkstra (adjacency matrix) 12,363 12,620 3,496,003 3,510,006 X 1.40 x 107
Traveling Salesman X > 1012 X > 1012 X > 1012

Table 2: Worst case number of instructions executed on the Wise benchmarks

Symbol X indicates that the tool fails to produce any inputs within 3 hour.

100

DMI mI WI WI Wl ﬂl

128 256 512 1024 2048
Fuzzing Size

Usage Ratio

N A~ 00 O

-

[Geometric Mean B Weighted Geometric Mean

Figure 7.1: Comparison against SLowFuzz. The usage ratio rep-
resents the ratio between the worst case resource usage found by
SINGULARITY and by SLowFuzz. Thus, a ratio greater than 1 indicates
that SINGULARITY triggers higher resource usage.

The benchmarks for this experiment include those reported in
the SLowFuzz paper [26], which consist of several sorting algo-
rithms, a hash table implementation from PHP, 19 regular expres-
sion matching problems, and a zip utility from the bzip2 applica-
tion. We do not use the bzip2 example in our evaluation since the
vulnerability is triggered only when certain bits in the input file
header are set; hence, this benchmark is not related to the input
pattern generation problem addressed in this paper.

Since this experiment involves 27 benchmarks and 6 different
input sizes, we report the aggregate results for each size. For each
benchmark b and size n, we use inputs I and I’ generated by SIN-

GULARITY and SLowFuzz to compute the usage ratio r;:
- ‘Ilb(I)
b1

where ¥}, (I) denotes the running time (in terms of instruction count)
of benchmark b on input I. Observe that rl'J’ > 1indicates that inputs
generated by SINGULARITY take longer to run.

To aggregate over all benchmarks for each input size, we consider
two different metrics:

o Geometric mean: For each input size s and benchmarks b1, . . ., by,

we compute the geometric mean, denoted GM(er, e, rl’;k), of

3 n n
ratios rbl, ceey rbk.

e Weighted geometric mean: Since the usage ratio r} is close to 1
for about half of the benchmarks, the geometric mean does not
convey the full story. Instead, we want to assign a small weight
to cases where both tools have similar performance, and assign a
larger weight when there is a significant performance difference.
Hence, we also compute the following weighted geometric mean :

Sy InGrp)?

n
WGM(rbl, .. exp (—Zk g
i= b;

ny_
.,rbk)—

The results of this comparison are summarized in Figure 7.1. We
can observe two main trends based on this figure: First, SINGULAR-
ITY is able to generate inputs that cause the applications to run
significantly longer within the time frame, showing that SINGULAR-
ITY is more efficient than SLowFuzz in terms of fuzzing efficiency.
Second, the performance ratios grow as n increases, showing that
SINGULARITY scales better compared to SLowFuzz. Hence, these
results highlight the scalability advantage of pattern fuzzing over
concrete input fuzzing.

7.4 Availability Vulnerability Detection

To demonstrate that SINGULARITY can generate inputs that exer-
cise non-trivial algorithmic complexity vulnerabilities, we evaluate
SINGULARITY on ten benchmarks taken from the DARPA STAC
program. Specifically, we choose exactly those benchmarks that (a)
exhibit an availability vulnerability, and (b) where it is possible to
construct an exploit using a malicious input pattern.

In more detail, each STAC benchmark is a Java application con-
taining between 500 to 20,000 lines of code. Furthermore, each
benchmark comes with a pre-defined input budget b and a target
running time ¢, and the goal is to craft an attack vector that causes
the running time of the application to exceed ¢t using an input of
size at most b. Table 3 provides more detailed information about
these STAC benchmarks.

To perform this experiment, we run SINGULARITY for a total of 3
hours on each benchmark. By default, we use a fuzzing size of 1KB,
unless the specified input budget b is smaller.

SLike the geometric mean, this metric is fair because if we switch SINGULARITY and

StowFuzz (i.e., replace r! with 1/r; for all i), W GM(r™) becomes 1/ W GM(r?).
1 1

Many other common averaging functions (e.g., arithmetic or quadratic mean) do not

have this property.

Singularity: Pattern Fuzzing for Worst Case Complexity

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Benchmark Description Input Type | DSL Used | Input budget | Target time | AV found?
blogger Blogging web application URL string 5KB 300s v
graphAnalyzer | DOT to PNG/PS converter | DOT file graph 5KB 3600s v
imageProcessor | Image classifier PNG file array 70KB 1080s v
textCrunchr Text analyzer text file string 400KB 300s X
linearAlgebra Matrix computation service | Matrix array 15.25KB 230s v
airplanl Online airline scheduler Graph graph 25KB 500s v
airplan2 Online airline scheduler Graph graph 25KB 500s v
airplan3 Online airline scheduler Graph graph 25KB 500s X
searchableBlog | Webpage search engine Matrix array 1KB 10s v
braidit1 Online multiplayer game String string 2KB 300s v
Table 3: Evaluation on STAC Benchmarks.
As summarized by the results in Table 3, SINGULARITY is able Signature Description
to generate the desired attack vector for 8 out of these 10 bench- emptyGraph() create an empty graph
marks. To understand the limitations of SINGULARITY, we manually addN(g) add a new node to t_he graph g i
addE(g, v) add a new edge with two new vertices and

investigate those benchmarks for which SINGULARITY fails to find
an attack vector.

For textCrunchr, the root cause of the problem is the empirical
measurement model. In particular, SINGULARITY evaluates the fit-
ness of an individual based on its performance on inputs at size
1KB, but this is much smaller than the input budget of 400K B and
results in sub-optimal patterns. While we could circumvent this
problem by using a much larger input size, that would significantly
increase the time to evaluate the fitness of a given input pattern,
thereby slowing down the fuzzing algorithm.

For airplan3, the evaluation time takes too long. During fitness
evaluation, running the application on an input of size 1KB can
take more than 3 minutes, and as a result, SINGULARITY fails to
converge to the fittest pattern within the 3-hour time limit.

7.5 Performance Bug Detection

To evaluate whether SINGULARITY can help with discovering un-
known performance bugs in real-world projects, we run SINGU-
LARITY on three popular Java libraries, namely Google Guava [15],
Vavr [34], and JGraphT [18]. All of these libraries have more than
1000 stars on Github and are used by more than 70 other projects
on Maven Central. Hence, any performance issue in these libraries
is likely to have significant real-world impact.

For each library, we identify a set of public APIs related to con-
tainer operations or graph algorithms and write driver code to
invoke these APIs using inputs generated by SINGULARITY. We
then use the input patterns generated by SINGULARITY to determine
worst-case complexities by (a) generating inputs of different sizes,
and (b) fitting a curve through these data points. If the complexity
obtained by SINGULARITY is worse than the expected worst-case,
we report the anomaly to developers and let them confirm whether
this is a performance bug.

Using this methodology, we identified five previously unknown
performance bugs, all of which have been confirmed by the devel-
opers. In what follows, we include brief descriptions of the perfor-
mance problems uncovered by SINGULARITY:

Performance bugs in Guava. SINGULARITY identified two perfor-
mance bugs in the ImmutableBiMap and ImmutableSet container
classes in the Guava library. Both of these classes provide a method
called copyOf that returns an ImmutableBiMap or ImmutableSet

edge value v to the graph g

add a new edge with one endpoint being an
existing node i

add a new self loop to an existing node i

add an edge between two vertices i1, i2
delete the ith edge from graph g

merge two graphs into one graph

update the ith edge’s value in graph g

add a new node, then connect it to all existing
nodes with edge value v

growE(g, v, i)

growLoop(g, v, i)
bridgeE(g, v, i1, iz)
deleteE(g, i)
mergeGraph(gi, g2)
updateEValue(g, v, i)
addCompleteN(g, v)

Table 4: Graph-related Components

that contains the same elements as the input collection. While both
of these copyOf methods are expected to take linear time, the inputs
generated by SINGULARITY cause O(n?) performance. In particular,
SINGULARITY triggers this worst-case behavior by causing hash
collisions despite the existence of a mechanism that tries to protect
against hash collisions. The inputs generated by SINGULARITY are
complex enough to bypass these existing mitigation mechanisms.
The details, including the bug report and input patterns discovered,
are explained in SINGULARITY’s documentation [35].

Performance bug in JGraphT. SINGULARITY identified a serious
performance bug in the JGraphT implementation of the push-relabel
maximum flow algorithm [13]. While the theoretical worst-case
behavior of this algorithm is O(n®), SINGULARITY is able to find
inputs that trigger O(n®) running time. This pattern corresponds to
an RCG with 2 internal states and 3 output states, as shown below,
and where the component semantics are listed in Table 4:

I = (0,addNode(emptyGraph()))

F1 = plus(sy, 2)

F2 = growE(bridgeE(growE(sz, 3, 0), 4, inc(s1), 51), 0, 0)
0=(,1,5)

Performance bug in Vavr. SINGULARITY also identified two per-
formance problems in the Vavr library that provides immutable and
persistent collections. In particular, while the addA1l and union
methods of LinkedHashSet are supposed to have worst-case lin-

ear complexity, SINGULARITY found inputs that trigger quadratic
behavior. The developers have acknowledged this issue and added

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

a caveat to the corresponding JavaDocs that these methods have
quadratic rather than the (expected) linear complexity.

7.6 Threats to Validity

Randomness. Since SINGULARITY leverages randomized algorithms,
its performance can be affected by various factors like parame-
ter sampling and individual selection. Hence, our results may be
skewed by unusually lucky or unlucky runs. To mitigate this con-
cern, we run SINGULARITY (as well as SLowFuzz) multiple times
(> 30) and consider the best result across all of these.

Benchmark selection. Due to their own technical limitations, we
are not able to run SLowFuzz and WIsE on a common set of bench-
mark programs. Instead, we compare SINGULARITY against SLow-
Fuzz and WIsE separately on their own benchmarks. While a com-
mon benchmark set for all tools may provide a more comprehen-
sive view, we believe our comparison is sufficient for showing the
strengths and weaknesses of these techniques.

8 LIMITATIONS

Generality. While the SINGULARITY framework can be applied
to many different programs, it requires the user to provide suitable
components that operate over the input type of the target program.
SINGULARITY already comes with a library of components for stan-
dard data types (e.g., integers, lists, graphs), but the user needs to
provide additional components for custom data types.

Driver code. While SINGULARITY supports a wide range of com-
monly used data types, it expects the user to write driver code to
translate these DSL data structures into the format accepted by the
target program. However, this kind of translation normally requires
little manual effort and can even be automated in most cases.

9 RELATED WORK

Testing for performance. There is a long line of work on auto-
mated testing techniques to uncover performance problems [4, 8,
14, 27, 32, 38, 39]. Among these prior techniques, WisE is the first
one to introduce the complexity testing problem, where the goal
is to determine the complexity of a given program by construct-
ing test cases that exhibit worst-case behavior. At a high level,
WISE uses an optimized version of dynamic symbolic execution
to guide the search towards execution paths with high resource
usage. While WISE is a white-box testing technique, our approach
is purely black-box and can scale to larger input sizes.

From a technical perspective, PerfSyn [32] is more similar to our
approach in that it uses black-box evolutionary search to generate
tests that cause performance bottlenecks. Specifically, PerfSyn starts
with a minimal usage example of the method under test and applies
a sequence of mutations that modify the original code. However, a
key difference is that PerfSyn focuses on performance bottlenecks
related to API usage, whereas our approach focuses on finding
input patterns that trigger worst-case complexity.

Another idea related to performance testing is empirical com-
putational complexity [14]. In particular, Goldsmith et al. propose
a technique for measuring empirical complexity by running the
program on workloads spanning several orders of magnitude in

Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig

size and fitting these observations to a model that predicts perfor-
mance as a function of input size. Since this technique requires the
user to manually provide representative workloads, our approach
is complementary to theirs.

Performance bug detection. As argued earlier in Section 1 and
demonstrated through our experiments, SINGULARITY can be useful
for uncovering performance bugs. In this sense, our technique is
related to a long line of work on performance bug detection [10, 23~
25]. Most of these techniques target narrow classes of performance
problems, such as redundant traversals [10, 23-25], loop inefficien-
cies [11, 22, 31], and unnecessary object creation [12]. Compared to
these techniques, SINGULARITY can to detect a broader class of per-
formance bugs but requires the user to decide whether the reported
worst-case complexity corresponds to a performance bug.

Algorithmic complexity vulnerabilities. Recently, there has been
significant interest in automated techniques for detecting algorith-
mic complexity (AC) vulnerabilities [5, 7, 9, 21, 30, 30, 37]. Some of
these techniques target a specific class of vulnerabilities, such as
those related to regular expressions [37]. Among approaches that
target a broader class of AC vulnerabilities, SLowFuzz [26] is most
closely related to our approach. In particular, SLowFuzz also uses
evolutionary search for generating inputs but performs mutations
at the byte level. In contrast, our method looks for input patterns
rather than concrete inputs and can therefore scale better when
large input sizes are required.

Asymptotic complexity analysis. Since SINGULARITY can be used
to determine worst-case complexity, it is related to static techniques
for analyzing the asymptotic behavior of programs [1, 3, 6, 16, 17,
29]. Our approach is complementary to static techniques in that
we can generate concrete inputs that trigger worst-case behavior.
For instance, our method can be used to validate the complexity
bounds reported by a static analyzer and help programmers debug
performance problems.

10 CONCLUSION

We have presented a new black-box fuzzing technique for generat-
ing inputs that trigger worst-case performance of a given program.
The key idea underlying our method is to look for input patterns
rather than concrete inputs and formulate the complexity testing
problem in terms of optimal program synthesis. Specifically, express
input patterns using recurrent computation graphs and use genetic
programming to find an RCG that results in worst-case behavior.
Our experiments demonstrate the advantages of our approach com-
pared to other techniques and show that our method is useful for
(a) finding worst-case asymptotic complexity bounds of interesting
algorithms, (b) detecting availability vulnerabilities in non-trivial
programs, and (c) discovering previously unknown performance
bugs in widely used Java libraries.

11 ACKNOWLEDGEMENTS

We thank the anonymous FSE’18 reviewers, Calvin Lin, and mem-
bers of the UToPiA group for their helpful feedback on earlier
drafts of this paper. This work was sponsored by DARPA award
FA8750-15-2-0096 and NSF Award CCF-1712067.

Singularity: Pattern Fuzzing for Worst Case Complexity ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

REFERENCES Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, 75-.

Kasper Luckow, Rody Kersten, and Corina Pasareanu. 2017. Symbolic Complexity
Analysis using Context-preserving Histories. In Software Testing, Verification and

[1] Elvira Albert, Jests Correas Fernandez, and Guillermo Roman-Diez. 2015. Non-
cumulative Resource Analysis. In Proceedings of the 21st International Conference
on Tools and Algorithms for the Construction and Analysis of Systems - Volume HYSE .
9035. Springer-Verlag New York, Inc., 85-100. Validation (ICST), 2017 IEEE International Conference on. IEEE, 58-68.

[2] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing [22 Adrlan' Nistor, P 0'-Chun Chang, Cosmin Radoi, and Shan Ll}' 201%; . Cf'xramelz
Synthesis with Metasketches. In Proceedings of the 43rd Annual ACM SIGPLAN- Detect;ng and l;llxmg PerformancelProbjlrems That Hﬁve Non-intrusive leels. In

; i ; , Proceedings of the 37th International Conference on Software Engineering - Volume
i]IGAgT iylr\lngogggn ;gslir;i;gzples of Programming Languages (POPL ’16). ACM, 1 (ICSE '15). IEEE Press, 902-912.

3] Mee::/c Boxfot’tkscilmi dt, Fabian]élmmes Stephan Falke, Carsten Fuhs, and Jiirgen [23] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler: Detecting
Giesl. 2016. Anal zix; Runtime and ’Size Iéom lexit ? of Integer Pro’ rams AgCM Performance Problems via Similar Memory-access Patterns. In Proceedings of
Trans. Proéram LyanggSyst 18 4 Article 13 (Aig 28,16) 50 I;gages g ’ the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,

[4] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated Test g)észx;jlzlc; Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of Asymptotic
Generation for Worst-case Complexity. In Proceedings of the 31st International S &, an ; ; ; ymp
Conference on Software Engineering (ICSE ‘09). IEEE, Computer Society, Washing- Performance Bugs in Collection Traversals. In Proceedings of the 36th ACM SIG-
ton. DC. USA. 463-473 8 s) P Yy 8 PLAN Conference on Programming Language Design and Implementation (PLDI

Xiang Cai, Yuwei Gui, and Rob Johnson. 2009. Exploiting Unix File-System Races 15). ACM, New York, NYf USA, 369-378. L . . .
. Rohan Padhye and Koushik Sen. 2017. Travioli: A Dynamic Analysis for Detecting
via Algorithmic Complexity Attacks. In 30th IEEE Symposium on Security and . .
Pri (S&P 2009), 17-20 May 2009, Oakland, California, USA. 2741 Data-structure Traversals. In Proceedings of the 39th International Conference on
rvacy X ay , Oakland, California, . i Software Engineering (ICSE "17). IEEE Press, Piscataway, NJ, USA, 473-483.

[21

[24

&

[25

(6] Q“e‘.m“ Carbonneaux, Jan Hoffmannl, and Zhong Shao. 2015. Compositional [26] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
Certified Resource Bounds. In Proceedings of the 36th ACM SIGPLAN Conference) . . T .

P ine L Desi d Impl tation (PLDI ’15). ACM, N SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity

;Zrkmé;aggniﬂzggage esign and Implementation () » New Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

[7] Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November

03, 2017. 2155-2168.

Michael Pradel, Markus Huggler, and Thomas R Gross. 2014. Performance
regression testing of concurrent classes. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ACM, 13-25.

Robert Sedgewick and Kevin Wayne. 2011. Algorithms (4th ed.). Addison-Wesley
Professional.

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2017. Complexity and Resource
Bound Analysis of Imperative Programs Using Difference Constraints. Journal
of Automated Reasoning (2017), 1-43.

Randy Smith, Cristian Estan, and Somesh Jha. 2006. Backtracking Algorithmic
Complexity Attacks against a NIDS. In 22nd Annual Computer Security Applica-

Vitaly Shmatikov. 2009. Inputs of coma: Static detection of denial-of-service
vulnerabilities. In Computer Security Foundations Symposium, 2009. CSF’09. 22nd
IEEE. IEEE, 186-199.

[8] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-sensitive
Profiling. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, New York, NY, USA,
89-98.

[9] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proceedings of the 12th USENIX Security Symposium,
Washington, D.C., USA, August 4-8, 2003.

[27

™~
&,

[29

[30

(10] Luca Della Toffola, Mlchael Pradfel, and T}}omas R. GAross‘. 2015. Perforxﬁance tions Conference (ACSAC 2006), 11-15 December 2006, Miami Beach, Florida, USA.
Problems You Can Fix: A Dynamic Analysis of Memoization Opportunities. In 89-08
Proceedlngf of the 2015 ACM SIGPLANIntema?mng I Conference on Object-Oriented [31] Linhai Song and Shan Lu. 2017. Performance Diagnosis for Inefficient Loops. In
Programming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New
Proceedings of the 39th International Conference on Software Engineering (ICSE
York, NY, USA, 607-622. ’17). IEEE Press, Piscataway, NJ, USA, 370-380.
[11] Monika Dhok and Murali Krishna Ramanathan. 2016. Directed Test Generation . o i

[32

Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthesizing
Programs That Expose Performance Bottlenecks. In Proceedings of the 2018 Inter-
national Symposium on Code Generation and Optimization. 1-13.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON ’99). IBM Press, 13—.

Vavr. [n. d.]. An object-functional language extension to Java 8. https://github.
com/vavr-io/vavr.

[35] Jiayi Wei. [n. d.]. Singularity DSL Documentation. https://github.com/
MrVPlusOne/Singularity/blob/develop/doc/GraphComponents.md.

to Detect Loop Inefficiencies. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 895-907.

[12] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended Analysis for
Performance Understanding of Framework-based Applications. In Proceedings of
the 2007 International Symposium on Software Testing and Analysis (ISSTA °07).
ACM, New York, NY, USA, 118-128.

[13] A V Goldberg and R E Tarjan. 1986. A New Approach to the Maximum Flow
Problem. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing (STOC ’86). ACM, New York, NY, USA, 136-146.

@
&

[34

[14] Slm(?r} F Goldsmlth, Alex S Alk?n’ and Damel‘ S Wilkerson. 2097[Measgrmg [36] Jiayi Wei. [n. d.]. Singularity Github Repository. https://github.com/MrVPlusOne/
empirical computational complexity. In Proceedings of the the 6th joint meeting of Singularity
theﬁ:‘ rop ea; s;)ﬂ ware en}gmeermg 'conf e.renclica;\ldd ;]‘;?_Aﬁ)]:l SIGSOFT symposium [37] Valentin Wiistholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig. 2017. Static
on The foundations of soft ware engineering. i o Detection of DoS Vulnerabilities in Programs that Use Regular Expressions. In
[15] Google. [n. d.]. Google core libraries for Java. https://github.com/google/guava. Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
[16] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. SPEED: Precise

tional Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part II. 3-20.

Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic Profiling. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 67-76.
Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. 2011. Automatic
Generation of Load Tests. In Proceedings of the 2011 26th IEEE/ACM International

and Efficient Static Estimation of Program Computational Complexity. In Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL '09). ACM, 127-139.

[17] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic
Resource Bound Analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2017). ACM, 359-373.

[18] JGraphT. [n. d.]. A free Java Graph Library. http://jgrapht.org/.

[38

[39

[19] Alexander Kl%nk .and Julian WAdlde. 2011. Efficient Denial of Service Attacks Conference on Automated Software Engineering (ASE '11). IEEE Computer Society,
on Web Application Platforms. https://events.ccc.de/congress/2011/Fahrplan/ Washington, DC, USA, 43-52. https://doi.org/10.1109/ASE.2011.6100093
attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf. T ’ ’ ’) ’ ' '

[Online; accessed 1-Feb-2018].
[20] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International

https://github.com/google/guava
http://jgrapht.org/
https://events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf
https://events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf
https://github.com/vavr-io/vavr
https://github.com/vavr-io/vavr
https://github.com/MrVPlusOne/Singularity/blob/develop/doc/GraphComponents.md
https://github.com/MrVPlusOne/Singularity/blob/develop/doc/GraphComponents.md
https://github.com/MrVPlusOne/Singularity
https://github.com/MrVPlusOne/Singularity
https://doi.org/10.1109/ASE.2011.6100093

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Definition
	2.2 Motivating Example

	3 Recurrent Computation Graphs
	4 Complexity Testing as Discrete Optimization
	5 Finding Optimal RCG using GP
	5.1 Algorithm Overview
	5.2 Genetic Operators
	5.3 Fitness Function

	6 Implementation
	7 Evaluation
	7.1 Asymptotic Bound Analysis
	7.2 Comparison Against Wise
	7.3 Comparison Against SlowFuzz
	7.4 Availability Vulnerability Detection
	7.5 Performance Bug Detection
	7.6 Threats to Validity

	8 Limitations
	9 Related work
	10 Conclusion
	11 Acknowledgements
	References

