
Component-Based Synthesis of Table Consolidation
and Transformation Tasks from Examples ∗

Yu Feng
University of Texas at Austin, USA

yufeng@cs.utexas.edu

Ruben Martins
University of Texas at Austin, USA

rmartins@cs.utexas.edu

Jacob Van Geffen
University of Texas at Austin, USA

jsv@cs.utexas.edu

Isil Dillig
University of Texas at Austin, USA

isil@cs.utexas.edu

Swarat Chaudhuri
Rice University, USA

swarat@rice.edu

Abstract
This paper presents a novel component-based synthesis
algorithm that marries the power of type-directed search
with lightweight SMT-based deduction and partial evalua-
tion. Given a set of components together with their over-
approximate first-order specifications, our method first gen-
erates a program sketch over a subset of the components and
checks its feasibility using an SMT solver. Since a program
sketch typically represents many concrete programs, the use
of SMT-based deduction greatly increases the scalability
of the algorithm. Once a feasible program sketch is found,
our algorithm completes the sketch in a bottom-up fashion,
using partial evaluation to further increase the power of de-
duction for rejecting partially-filled program sketches. We
apply the proposed synthesis methodology for automating a
large class of data preparation tasks that commonly arise in
data science. We have evaluated our synthesis algorithm on
dozens of data wrangling and consolidation tasks obtained
from on-line forums, and we show that our approach can
automatically solve a large class of problems encountered
by R users.

CCS Concepts •Software and its engineering → Pro-
gramming by example; Automatic programming; •The-
ory of computation→ Program specifications

∗ This work was supported in part by NSF Awards #1453386 and #1162076,
and DARPA MUSE Award #8750-14-2-0270.

Keywords Program synthesis, Programming by example,
data preparation, Component-based synthesis, SMT-based
deduction

1. Introduction
The problem of program synthesis from examples has re-
ceived significant attention from researchers in the last few
years. The central objective of this research area is to auto-
mate certain classes of programming tasks, either with the
goal of helping end-users to “program” or absolving soft-
ware developers from tedious coding tasks. To accomplish
these goals, many program synthesis techniques define the
space of relevant programs using a domain-specific language
(DSL) and give methods to search the space of DSL pro-
grams that are consistent with the user-provided examples.
Recent work has shown that such a methodology can be
practical in many domains [6, 10, 13, 22, 24, 30].

A particularly interesting version of this problem con-
cerns the synthesis of programs that manipulate tabular
data. Such programs are especially important in an era
where data analytics has gained enormous popularity across
a wide range of disciplines, ranging from biology to busi-
ness to the social sciences. Since raw data is rarely in a form
that is immediately amenable to an analytics or visualization
task, data scientists typically spend over 80% of their time
performing tedious data preparation tasks [7]. Such tasks in-
clude consolidating multiple data sources into a single table,
reshaping data from one format into another, or adding new
rows or columns to an existing table.

While data preparation tasks would seem to be natural
targets for synthesis, many such tasks are too complex to
be handled by existing techniques. If written in a low-level
language, programs implementing these tasks would be sim-
ply too large to be discovered by combinatorial search. One
way around this difficulty is to describe the relevant compu-
tations using a set of predefined library functions, or compo-

Sketch
GenerationExamples

Components

Specs

SMT-based
Deduction

Sketch
completion
w/ partial
evaluation

MORPHEUS

Figure 1. Overview of our approach

nents, and then synthesize programs that use these high-level
primitives. Another advantage of such a component-based
synthesis approach is its flexibility: Since the reasoning of
the synthesizer is not hard-wired to a fixed set of DSL con-
structs, the underlying algorithm can generate more complex
programs as new libraries emerge or as more components are
added to its knowledge base.

Unfortunately, a key challenge in developing such a gen-
eral component-based synthesis algorithm for automating
data preparation tasks is scalability: Since many languages
(e.g., R) provide a large number of components that are typ-
ically used in data preparation, the size of the search space
that must be explored by the underlying synthesis algorithm
can be very large. Due to this difficulty, prior techniques
for automating table transformations (e.g., [17, 37]) fo-
cus on narrowly-defined DSLs, such as subsets of the Ex-
cel macro language [17] or fragments of SQL [37]. Unfortu-
nately, many common data preparation tasks (e.g., those that
involve reshaping tables or require performing nested table
joins) fall outside the scope of these previous approaches.

In this paper, we propose a general component-based
synthesis algorithm for automating a large class of data
preparation tasks. Specifically, our synthesis algorithm is
parametrized over a set of components, which can include
both higher-order and first-order combinators. The set of
components used by the synthesizer can be customized by
the user or extended over time as new libraries emerge.

In order to address the scalability challenges that arise
from our more general formulation of the problem, we pro-
pose a new synthesis algorithm that combines type-directed
enumerative search with lightweight SMT-based deduction
and partial evaluation. In our formulation of the synthesis
problem, each component C is equipped with a logical, in-
complete specification that over-approximates C’s behavior.
These specifications are utilized by the synthesizer to per-
form lightweight SMT-based reasoning, with the goal of re-
jecting infeasible partial programs. Furthermore, specifica-
tions are provided per component, so they can be re-used
across arbitrarily many synthesis tasks. Since our technique
does not depend on hard-coded component-specific reason-
ing, our approach significantly generalizes prior uses of de-
duction in example-guided synthesis (e.g., [10]).

Figure 1 shows a schematic illustration of our synthesis
algorithm, implemented in a tool called MORPHEUS. To fa-

cilitate effective use of SMT-based deduction, our algorithm
decomposes the synthesis task into two separate sketch gen-
eration and sketch completion phases. In particular, a sketch
specifies the top-level combinators used in the program, but
not their corresponding arguments. Our algorithm uses type-
directed enumerative search to lazily explore the space of
all possible program sketches and infers a specification of
each candidate sketch using the specifications of the under-
lying components. Hence, once we have a candidate sketch
S, we can use an SMT solver to test whether S is consistent
with the provided input-output examples. Because a program
sketch typically represents many concrete programs, the re-
jection of program sketches using SMT-based reasoning dra-
matically improves the scalability of the synthesis algorithm.

Once our algorithm finds a feasible program sketch, it
then tries to complete it in a bottom-up, type-directed way. In
particular, the synthesizer evaluates sub-terms of the partial
program P to infer a more precise specification for P and
again uses SMT-based reasoning with the goal of refuting
the partially-completed sketch. Hence, the use of partial
evaluation further improves the scalability of the synthesis
algorithm by allowing us to refute partial programs obtained
during sketch completion.

While the core ideas underlying our algorithm are gener-
ally applicable to any component-based synthesizer, we have
used these ideas to automate table consolidation and trans-
formation tasks that commonly arise in data science. Specif-
ically, our implementation, MORPHEUS, takes as input a set
of source data frames in R, as well as the target data frame
that should be generated using the synthesized program. Ad-
ditionally, the user can also provide a set of components (i.e.,
library methods), optionally with their corresponding first-
order specifications. However, since our implementation al-
ready comes with a built-in set of components that are com-
monly used in data preparation, the user does not need to
provide any additional components but can do so if she so
desires. Using the ideas outlined above, MORPHEUS then
automatically synthesizes an R program that can now be ap-
plied to other data frames.

To evaluate our techniques, we have collected a suite
of data preparation tasks for the R programming language,
drawn from discussions among R users in on-line forums
such as Stackoverflow. The “components” in our evaluation
are methods provided by two popular R libraries, namely

tidyr and dplyr, for data tidying and manipulation. Our
experiments show that MORPHEUS can successfully synthe-
size a diverse class of real-world data preparation programs.
We also evaluate the performance of MORPHEUS using com-
ponent specifications of different granularities and demon-
strate that SMT-based deduction and partial evaluation are
crucial for the scalability of our approach.

To summarize, this paper makes the following key contri-
butions:

• We describe a novel component-based synthesis algo-
rithm that uses SMT-based deduction and partial evalu-
ation to dramatically prune the search space.
• We apply the proposed ideas to automate a diverse class

of data wrangling and consolidation tasks that commonly
arise in data science.
• We implement these ideas in a tool called MORPHEUS

and empirically evaluate our approach in a number of
ways. First, we show that MORPHEUS can successfully
automate 98% of R-related data preparation tasks col-
lected from on-line forums. Second, we perform a small
user study showing that the class of tasks that can be
automated by MORPHEUS are difficult even for expert
R programmers. Finally, we also show that MORPHEUS
can synthesize non-trivial SQL queries and that it per-
forms better than the SQLSYNTHESIZER tool on their
own dataset.

2. Motivating Examples
In this section, we illustrate the diversity of data preparation
tasks using a few examples collected from Stackoverflow.

Example 1. An R user has the data frame in Figure 2(a),
but wants to transform it to the following format [1]:

id A 2007 B 2007 A 2009 B 2009

1 5 10 5 17
2 3 50 6 17

Even though the user is quite familiar with R libraries for
data preparation, she is still not able to perform the desired
task. Given this example, MORPHEUS can automatically
synthesize the following R program:
df1=gather(input,var,val,id,A,B)
df2=unite(df1,yearvar,var,year)
df3=spread(df2,yearvar,val)

Observe that this example requires both reshaping the
table and appending contents of some cells to column names.

Example 2. Another R user has the data frame from Fig-
ure 2(b) and wants to compute, for each source location L,
the number and percentage of flights that go to Seattle (SEA)
from L [2]. In particular, the output should be as follows:

origin n prop

EWR 2 0.6666667
JFK 1 0.3333333

id year A B

1 2007 5 10
2 2009 3 50
1 2007 5 17
2 2009 6 17

flight origin dest

11 EWR SEA
725 JFK BQN
495 JFK SEA
461 LGA ATL

1696 EWR ORD
1670 EWR SEA

(a) (b)

Figure 2. (a) Data frame for Example 1; (b) for Example 2.

MORPHEUS can automatically synthesize the following R
program to extract the desired information:

df1=filter(input, dest == "SEA")
df2=summarize(group by(df1, origin), n = n())
df3=mutate(df2, prop = n / sum(n))

Observe that this example involves selecting a subset of
the data and performing some computation on that subset.

Example 3. A data analyst has the following raw data about
the position of vehicles for a driving simulator [3]:

Table 1: Table 2:
frame X1 X2 X3

1 0 0 0
2 10 15 0
3 15 10 0

frame X1 X2 X3

1 0 0 0
2 14.53 12.57 0
3 13.90 14.65 0

Here, Table 1 contains the unique identification number
for each vehicle (e.g., 10, 15), with 0 indicating the absence
of a vehicle. The column labeled “frame” in Table 1 mea-
sures the time step, and the columns “X1”, “X2”, “X3”
track which vehicle is closer to the driver. For example, at
frame 3, the vehicle with ID 15 is the closest to the driver.
Table 2 has a similar structure as Table 1 but contains the
speeds of the vehicles instead of their identification number.
For example, at frame 3, the speed of the vehicle with ID 15
is 13.90 m/s. The data analyst wants to consolidate these two
data frames into a new table with the following shape:

frame pos carid speed

2 X1 10 14.53
3 X2 10 14.65
2 X2 15 12.57
3 X1 15 13.90

Despite looking into R libraries for data preparation, the
analyst still cannot figure out how to perform this task and
asks for help on Stackoverflow. MORPHEUS can synthesize
the following R program to automate this complex task:

df1=gather(table1,pos,carid,X1,X2,X3)
df2=gather(table2,pos,speed,X1,X2,X3)
df3=inner join(df1,df2)
df4=filter(df3,carid != 0)
df5=arrange(df4,carid,frame)

3. Problem Formulation
In order to precisely describe our synthesis problem, we first
present some definitions that we use throughout the paper.

Definition 1. (Table) A table T is a tuple (r, c, τ, ς) where:

• r, c denote number of rows and columns respectively
• τ : {l1 : τ1, . . . , lc : τc} denotes the type of T. In

particular, each li is the name of a column in T and τi
denotes the type of the value stored in T. We assume that
each τi is either num or string.
• ς is a mapping from each cell (i, j) ∈ ([0, r) × [0, c)) to

a value v stored in that cell

Given a table T = (r, c, τ, ς), we write T.row and T.col to
denote r and c respectively. We also write Ti,j as shorthand
for ς(i, j) and type(T) to represent τ . We refer to all record
types {l1 : τ1, . . . , lc : τc} as type tbl. In addition, tables
with only one row are referred to as being of type row.

Definition 2. (Component) A component X is a triple
(f, τ, φ) where f is a string denoting X ’s name, τ is the
type signature (see Figure 3), and φ is a first-order formula
that specifies X ’s input-output behavior.

Given a component X = (f, τ, φ), the specification φ
is over the vocabulary x1, . . . , xn, y, where xi denotes X ’s
i’th argument and y denotes X ’s return value. Note that
specification φ does not need to precisely capture X ’s input-
output behavior; it only needs to be an over-approximation.
Thus, true is always a valid specification for any component.

With slight abuse of notation, we sometimes writeX (. . .)
to mean f(. . .) whenever X = (f, τ, φ). Also, given a com-
ponentX and arguments c1, . . . , cn, we write [[X (c1, . . . , cn)]]
to denote the result of evaluatingX on arguments c1, . . . , cn.

Definition 3. (Problem specification) The specification for
a synthesis problem is a pair (E ,Λ) where:

• E is an input-output example (~Tin,Tout) such that ~Tin
denotes a list of input tables, and Tout is the output table,
• Λ = (ΛT ∪ Λv) is a set of components, where ΛT,Λv

denote table transformers and value transformers respec-
tively. We assume that ΛT includes higher-order func-
tions, but Λv consists of first-order operators.

Given an input-output example E = (~Tin,Tout), we write
Ein, Eout to denote ~Tin, Tout respectively. Also, we classify
components Λ into two disjoint classes ΛT and Λv , where
ΛT denotes table transformer components that take at least
one table as an argument and return a table. Components of
all other types are value transformers Λv . While table trans-
formers can be higher-order combinators, value transform-
ers are always first-order. In the rest of the paper, we assume
that table transformers only take tables and first-order func-
tions (constructed using constants and components in Λv) as
arguments.

Cell type γ := num | string
Primitive type β := γ | bool | cols
Table type tbl := {l1 : γ1, ..., ln : γn} (row <: tbl)
Type τ := β | tbl | τ1 → τ2 | τ1 × τ2

Figure 3. Types used in components; cols represents a list
of strings where each string is a column name in some table.

Example 4. Consider the selection operator σ from rela-
tional algebra, which takes a table and a predicate and re-
turns a table. In our terminology, such a component is a ta-
ble transformer. In contrast, an aggregate function such as
sum that takes a list of values and returns their sum is a
value transformer. Similarly, the boolean operator ≥ is also
a value transformer.

Definition 4. (Synthesis problem) Given specification
(E ,Λ) where E = (~Tin,Tout), the synthesis problem is to
infer a program λ~x.e such that (a) e is a well-typed expres-
sion over components in Λ, and (b) (λ~x.e)~Tin = Tout.

4. Hypotheses as Refinement Trees
Before we can describe our synthesis algorithm, we first in-
troduce hypotheses that represent partial programs with un-
known expressions (i.e., holes). More formally, hypotheses
H are defined by the grammar presented in Figure 5. In the
simplest form, a hypothesis (?i : τ) represents an unknown
expression of type τ . More complicated hypotheses are con-
structed using table transformation components X ∈ ΛT. In
particular, if X = (f, τ, φ) ∈ ΛT, a hypothesis of the form
?Xi (H1, . . . ,Hn) represents an expression f(e1, . . . , en).

During the course of our synthesis algorithm, we will
progressively fill the holes in the hypothesis with concrete
expressions. For this reason, we also allow hypotheses of the
form (?i : τ)@Q where qualifier Q specifies the term that
is used to fill hole ?i. Specifically, if ?i is of type tbl, then
its corresponding qualifier has the form (x,T), which means
that ?i is instantiated with input variable x, which is in turn
bound to table T in the input-output example provided by the
user. On the other hand, if ?i is of type (τ1× . . .× τn)→ τ ,
then the qualifier must be a first-order function λy1, . . . yn.t
constructed using components Λv . 1

Our synthesis algorithm starts with the most general hy-
pothesis and progressively makes it more specific. There-
fore, we now define what it means to refine a hypothesis:

Definition 5. (Hypothesis refinement) Given two hypothe-
ses H,H′, we say that H′ is a refinement of H if it can
be obtained by replacing some subterm ?i : τ of H by
?Xi (H1, . . . ,Hn) where X = (f, τ ′ → τ, φ) ∈ ΛT.

In other words, a hypothesis H′ refines another hypothe-
sisH if it makes it more constrained.

1 We view constants as a special case of first-order functions.

[[(?i : τ)]]∂ =?i [[(?i : τ)@(x,T)]]∂ = T [[(?i : τ)@t]]∂ = t

[[?χi (H1, . . . ,Hn)]]∂ =

{
X ([[H1]]∂ , . . . , [[Hn]]∂) if ∃i ∈ [1, n]. PARTIAL([[Hi]]∂)
[[X ([[H1]]∂ , . . . , [[Hn]]∂)]] otherwise

Figure 4. Partial evaluation of hypothesis. We write PARTIAL([[H]]∂) if [[H]]∂ contains at least one question mark.

Term t := const| yi | X (t1, ..., tn) (X ∈ Λv)
Qualifier Q := (x,T) | λy1, . . . yn. t
HypothesisH := (?i : τ) | (?i : τ)@Q

| ?Xi (H1, ...,Hn) (X ∈ ΛT)

Figure 5. Context-free grammar for hypotheses

?π0 : tbl

?σ1 : tbl

?3 : tbl ?4 : row → bool

?2 : cols

Figure 6. Representing hypotheses as refinement trees

?π0 : tbl

?1 : tbl@(x1,T) ?2 : cols

?π0 : tbl

?1 : tbl@
(x1,T)

?2 : cols@
[name, year]

Figure 7. A sketch (left) and a complete program (right)

Example 5. The hypothesisH1 =?σ0 (?1 : tbl, ?2 : row→
bool) is a refinement of H0 =?0 : tbl because H1

is more specific than H0. In particular, H0 represents any
arbitrary expression of type tbl, whereas H1 represents
expressions whose top-level construct is a selection.

Since our synthesis algorithm starts with the hypothesis
?0 : tbl and iteratively refines it, we will represent hypothe-
ses using refinement trees [24]. Effectively, a refinement tree
corresponds to the abstract syntax tree (AST) for the hy-
potheses from Figure 5. In particular, note that internal nodes
labeled ?χi of a refinement tree represent hypotheses whose
top-level construct is χ. If an internal node ?χi has children
labeled with unknowns ?j , . . . , ?j+n, this means that hy-
pothesis ?i was refined to χ(?j , . . . , ?j+n). Intuitively, a re-
finement tree captures the history of refinements that occur
as we search for the desired program.

Example 6. Consider the refinement tree from Figure 6, and
suppose that π, σ denote the standard projection and se-
lection operators in relational algebra. This refinement tree
represents the partial program π(σ(?, ?), ?).The refinement
tree also captures the search history in our synthesis algo-
rithm. Specifically, it shows that our initial hypothesis was
?0, which then got refined to π(?1, ?2), which in turn was
refined to π(σ(?3, ?4), ?2).

T1

id name age GPA

1 Alice 8 4.0
2 Bob 18 3.2
3 Tom 12 3.0

T2

id name age GPA

2 Bob 18 3.2
3 Tom 12 3.0

Figure 8. Tables for Example 8

As mentioned in Section 1, our approach decomposes the
synthesis task into two separate sketch generation and sketch
completion phases. We define a sketch to be a special kind
of hypothesis where there are no unknowns of type tbl.

Definition 6. (Sketch) A sketch is a special form of hypoth-
esis where all leaf nodes of type tbl have a corresponding
qualifier of the form (x,T).

In other words, a sketch completely specifies the table
transformers used in the target program, but the first-order
functions supplied as arguments to the table transformers are
yet to be determined.

Example 7. Consider the refinement tree from Figure 6.
This hypothesis is not a sketch because there is a leaf node
(namely ?3) of type tbl that does not have a correspond-
ing qualifier. On the other hand, the refinement tree shown
in Figure 7 (left) is a sketch and corresponds to the partial
program π(x1, ?) where ? is a list of column names. Fur-
thermore, this sketch states that variable x1 corresponds to
table T from the input-output example.

Definition 7. (Complete program) A complete program is
a hypothesis where all leaf nodes are of the form (?i : τ)@Q.

In other words, a complete program fully specifies the
expression represented by each ? in the hypothesis. For in-
stance, a hypothesis that represents a complete program is
shown in Figure 7 (right) and represents the relational alge-
bra term λx1.πname, year(x1).

As mentioned in Section 1, our synthesis procedure relies
on performing partial evaluation. Hence, we define a func-
tion [[H]]∂ , shown in Figure 4, for partially evaluating hy-
pothesis H. Observe that, if H is a complete program, then
[[H]]∂ evaluates to a concrete table. Otherwise, [[H]]∂ returns
a partially evaluated hypothesis. We write PARTIAL([[H]]∂)
if [[H]]∂ does not evaluate to a concrete term (i.e., contains
question marks).

Example 8. Consider hypothesisH on the left-hand side of
Figure 9, where T1 is Table 1 from Figure 8. The refinement
tree on the right-hand-side of Figure 9 shows the result of
partially evaluatingH, where T2 is Table 2 from Figure 8.

?π0 : tbl

?σ1 : tbl

?3 : tbl@(x3,T1) age>8

?2 : cols

?π0 : tbl

?1 : tbl@
(x1, T2)

?2 : cols

Figure 9. Partial evaluation on hypothesis from Figure 6;
age>8 stands for ?4 : row→ bool@λx. (x.age > 8).

Hypothesis
Refinement

SMT-based
Deduction

Sketch
Completion

Program

3
3

7

sketch

candidate
sketch

7

Figure 10. Illustration of the top-level synthesis algorithm

5. Synthesis Algorithm
In this section, we describe the high-level structure of our
synthesis algorithm, leaving the discussion of SMT-based
deduction and sketch completion to the next two sections.

As illustrated schematically in Figure 10, our synthesis
algorithm maintains a priority queue of hypotheses, which
are either converted into a sketch or refined to a more specific
hypothesis during each iteration. Specifically, the synthesis
procedure picks the most promising hypothesis H accord-
ing to some heuristic cost metric (explained in Section 8)
and asks the deduction engine if H can be successfully con-
verted into a sketch. If the deduction engine refutes this con-
jecture, we then discard H but add all possible (one-level)
refinements of H into the worklist. Otherwise, we convert
hypothesisH into a sketch S and try to complete it using the
sketch completion engine.

Algorithm 1 describes our top-level synthesis algorithm
in more detail. Given an example E and a set of components
Λ, SYNTHESIZE either returns a complete program that sat-
isfies E or yields ⊥, meaning that no such program exists.

Internally, the SYNTHESIZE procedure maintains a prior-
ity queue W of all hypotheses. Initially, the only hypothesis

Tj ∈ Tin
H = (?i : tbl)

H@(xj ,Tj) ∈ Sketches(H, ~Tin)
(1)

H =?i : τi
τi 6= tbl

H ∈ Sketches(H, ~Tin)
(2)

H =?Xi (H1, ...,Hn)

H′i ∈ Sketches(Hi, ~Tin)

?Xi (H′1, ...,H′n) ∈ Sketches(H, ~Tin)
(3)

Figure 11. Converting a hypothesis into a sketch.

Algorithm 1 Synthesis Algorithm
1: procedure SYNTHESIZE(E ,Λ)
2: input: Input-output example E and components Λ
3: output: Synthesized program or ⊥ if failure

4: W := {?0:tbl} . Init worklist

5: while W 6= ∅ do
6: chooseH ∈W ;
7: W := W\{H}
8: if DEDUCE(H, E) = ⊥ then . Contradiction
9: goto refine;

10: . No contradiction
11: for S ∈ SKETCHES(H, Ein) do
12: P := FILLSKETCH(S, E)
13: for p ∈ P do
14: if CHECK(p, E) then return p

15: refine: .Hypothesis refinement

16: for X ∈ ΛT, (?i: tbl) ∈ LEAVES(H) do
17: H′ := H[?Xj (?j : ~τ)/?i]
18: W := W ∪H′

19: return ⊥

in W is ?0, which represents any possible program. In each
iteration of the while loop (lines 5–18), we pick a hypothe-
sisH fromW and invoke the DEDUCE procedure (explained
later) to check ifH can be directly converted into a sketch by
filling holes of type tbl with the input variables. Note that
our deduction procedure is sound but, in general, not com-
plete: Since component specifications are over-approximate,
the deduction procedure can return> (i.e., true) even though
no valid completion of the sketch exists. However, DEDUCE
returns ⊥ only when the current hypothesis requires further
refinement. Hence, the use of deduction does not lead to a
loss of completeness in our overall synthesis approach.

If DEDUCE does not find a conflict, we then convert the
current hypothesis H into a set of possible sketches (line
11). The function SKETCHES used at line 11 is presented
using inference rules in Figure 11. Effectively, we convert
hypothesis H into a sketch by replacing each hole of type
tbl with one of the input variables xj , which corresponds
to table Tj in the input-output example.

Now, given a candidate sketch S, we try to complete it
using the call to FILLSKETCH at line 12 (explained in Sec-
tion 7). FILLSKETCH returns a set of complete programs P
such that each p ∈ P is valid with respect to our deduction
procedure. However, as our deduction procedure is incom-
plete, p may not satisfy the input-output examples. Hence,
we only return p as a solution if p satisfies E (line 14).

Lines 16-18 of Algorithm 1 perform hypothesis refine-
ment. The idea behind hypothesis refinement is to replace
one of the holes of type tbl in H with a component from
ΛT, thereby obtaining a more specific hypothesis. Each of

Φ(Hi) = α([[Hi]]∂)[?i/x] if ¬PARTIAL([[Hi]]∂)
Φ(Hi) = > else if ISLEAF(Hi)

Φ(?X0 (H1, ...,Hn)) =
∧

1≤i≤n
Φ(Hi) ∧ φχ[?0/y, ~?i/~xi]

Figure 12. Constraint generation for hypotheses. ?i denotes the
root variable of Hi and the specification of X is φX . Function α
generates an SMT formula describing its input table.

the refined hypotheses is added to the worklist and possibly
converted into a sketch in future iterations.

6. SMT-based Deduction
In the previous section, we described the structure of the
synthesis algorithm, but did not yet explain the underlying
deductive reasoning engine. The key idea here is to generate
an SMT formula that corresponds to the specification of
the current sketch and to check whether the input-output
example satisfies this specification.

Component specifications. We use the specifications of in-
dividual components to derive the overall specification for a
given hypothesis. As mentioned earlier, these specifications
need not be precise and can, in general, over-approximate
the behavior of the components. For instance, Table 1 shows
sample specifications for a subset of methods from two pop-
ular R libraries. Note that these sample specifications do
not fully capture the behavior of each component and only
describe the relationship between the number of rows and
columns in the input and output tables. 2 For example, con-
sider the filter function from the dplyr library for se-
lecting a subset of the rows that satisfy a given predicate in
the data frame. The specification of filter, which is ef-
fectively the selection operator σ from relational algebra, is
given by:

Tout.row < Tin.row ∧ Tout.col = Tin.col

In other words, this specification expresses that the table
obtained after applying the filter function contains fewer
rows but the same number of columns as the input table. 3

Generating specification for hypothesis. Given a hypoth-
esis H, we need to generate the specification for H using
the specifications of the individual components used in H.
Towards this goal, the function Φ(H) defined in Figure 12
returns the specification of hypothesisH.

In the simplest case, Hi corresponds to a complete pro-
gram (line 1 of Figure 12) 4. In this case, we evaluate the hy-

2 The actual specifications used in our implementation are slightly more
involved. In Section 9, we compare the performance of MORPHEUS using
two different specifications.
3 In principle, the number of rows may be unchanged if the predicate does
not match any row. However, we need not consider this case since there is
a simpler program without filter that satisfies the example.
4 Recall that the DEDUCE procedure will also be used during sketch com-
pletion. While H can never be a complete program when called from line 8

pothesis to a table T and obtain Φ(Hi) as the “abstraction” of
T. In particular, the abstraction function α used in Figure 12
takes as input a concrete table T and returns a constraint de-
scribing that table. In general, the definition of the abstrac-
tion function α depends on the granularity of the component
specifications. For instance, if our component specifications
only refer to the number of rows and columns, then a suit-
able abstraction function for an m × n table would yield
x.row = m ∧ x.col = n. In general, we assume variable x is
used to describe the input table of α.

Let us now consider the second case in Figure 12 where
Hi is a leaf, but not a complete program. In this case, since
we do not have any information about what Hi represents,
we return > (i.e., true) as the specification.

Finally, let us consider the case where the hypothesis is of
the form ?X0 (H1, . . . ,Hn). In this case, we first recursively
infer the specifications of sub-hypothesesH1, . . . ,Hn. Now
suppose that the specification of X is given by φX (~x, y),
where ~x and y denote X ’s inputs and output respectively. If
the root variable of each hypothesis Hi is given by ?i, then
the specification for the overall hypothesis is obtained as:∧

1≤i≤n

Φ(Hi) ∧ φχ[?0/y, ~?i/~xi]

Example 9. Consider hypothesisH from Figure 6, and sup-
pose that the specifications for relational algebra operators
π and σ are the same as select and filter from Ta-
ble 1 respectively. Then, Φ(H) corresponds to the following
Presburger arithmetic formula:

?1.row <?3.row ∧ ?1.col =?3.col ∧
?0.row =?1.row ∧ ?0.col <?1.col

Here, ?3, ?0 denote the input and output tables respectively,
and ?1 is the intermediate table obtained after selection.

Deduction using SMT. Algorithm 2 presents our deduc-
tion algorithm using the constraint generation function Φ
defined in Figure 12. Given a hypothesisH and input-output
example E , DEDUCE returns ⊥ if H does not correspond to
a valid sketch. In other words, DEDUCE(H, E) = ⊥ means
that we cannot obtain a program that satisfies the input-
output examples by replacing holes with inputs.

As shown in Algorithm 2, the DEDUCE procedure gener-
ates a constraint ψ and checks its satisfiability using an SMT
solver. If ψ is unsatisfiable, hypothesis H cannot be unified
with the input-output example and can therefore be rejected.

Let us now consider the construction of SMT formula
ψ in Algorithm 2. First, given a hypothesis H, the corre-
sponding sketch must map each of the unknowns of type
tbl to one of the arguments. Hence, the constraint ϕin gen-
erated at line 5 indicates that each leaf with label ?j corre-
sponds to some argument xi. Similarly, ϕout expresses that

of the SYNTHESIZE procedure (Algorithm 1), it can be a complete program
when DEDUCE is invoked through the sketch completion engine.

Lib Component Description Specification

tid
yr

spread Spread a key-value pair across multiple columns. Tout.row ≤ Tin.row
Tout.col ≥ Tin.col

gather Takes multiple columns and collapses into key-
value pairs, duplicating all other columns as needed.

Tout.row ≥ Tin.row
Tout.col ≤ Tin.col

dp
ly

r select Project a subset of columns in a data frame. Tout.row = Tin.row
Tout.col < Tin.col

filter Select a subset of rows in a data frame. Tout.row < Tin.row
Tout.col = Tin.col

Table 1. Sample specifications of a few components

Algorithm 2 SMT-based Deduction Algorithm

1: procedure DEDUCE(H, E)

2: input: HypothesisH, input-output example E
3: output: ⊥ if cannot be unified with E ; > otherwise

4: S := {?j | ?j : tbl ∈ LEAVES(H)}
5: ϕin :=

∧
?j∈S

∨
1≤i≤|Ein|

(?j = xi)

6: ϕout := (y =ROOTVAR(H))

7: ψ :=

(
Φ(H) ∧ ϕin ∧ ϕout∧∧

Ti∈Ein
(α(Ti)[xi/x]) ∧ α(Tout)[y/x]

)
8: return SAT(ψ)

the root variable of hypothesisH must correspond to the re-
turn value y of the synthesized program. Hence, the con-
straint Φ(H) ∧ ϕin ∧ ϕout expresses the specification of the
sketch in terms of variables x1, . . . , xn, y.

Now, to check if H is unifiable with example E , we
must also generate constraints that describe each table Tiin
in terms of xi and Tout in terms of y. Recall from earlier
that the abstraction function α(T) generates an SMT formula
describing T in terms of variable x. Hence, the constraint

∧
Ti∈Ein

(α(Ti)[xi/x]) ∧ α(Tout)[y/x]

expresses that each Tiin must correspond to xi and Tout must
correspond to variable y. Thus, the unsatisfiability of for-
mula ψ at line 7 indicates that hypothesisH can be rejected.
Example 10. Consider the hypothesis from Figure 6, and
suppose that the input and output tables are T1 and T2

from Figure 8 respectively. The DEDUCE procedure from
Algorithm 2 generates the following constraint ψ:

?1.row <?3.row ∧ ?1.col =?3.col ∧?0.row =?1.row
∧ ?0.col <?1.col ∧ x1 =?3 ∧ y =?0 ∧

x1.row = 3 ∧ x1.col = 4 ∧ y.row = 2 ∧ y.col = 4

Observe that Φ(H) ∧ ϕin ∧ ϕout implies y.col < x1.col,
indicating that the output table should have fewer columns
than the input table. Since we have x1.col = y.col, constraint
ψ is unsatisfiable, allowing us to reject the hypothesis.

type(T) = {l1 : τ1, ..., ln : τn}
c = [li | i ∈ Ci] for Ci ∈ P([1, n])

Γ ` c ∈ Ω(cols,T)
(Cols)

c ∈ T, type(c) = τ
τ ∈ {num, string}

Γ ` c ∈ Ω(τ,T)
(Const)

Γ ` x : τ

Γ ` x ∈ Ω(τ,T)
(Var)

Γ ` t1 ∈ Ω(τ1,T)
Γ ` t2 ∈ Ω(τ2,T)

Γ ` (t1, t2) ∈ Ω(τ1 × τ2,T)
(Tuple)

(f, τ ′ → τ, φ) ∈ Λv
Γ ` t ∈ Ω(τ ′,T)

Γ ` f(t) ∈ Ω(τ,T)
(App)

τ = (τ1 × . . .× τn → τ ′)
Γ′ = Γ ∪ {x1 : τ1, . . . xn : τn}

Γ′ ` t ∈ Ω(τ ′,T)

Γ ` (λx1, . . . , xn. t) ∈ Ω(τ,T)
(Lambda)

Figure 13. Table-driven type inhabitation rules.

7. Sketch Completion
The goal of sketch completion is to fill the remaining holes
in the hypothesis with first-order functions constructed us-
ing components in Λv . For instance, consider the sketch
π(σ(x, ?1), ?2) where π, σ are the familiar projection and
selection operators from relational algebra. Now, in order to
fill hole ?1, we need to know the columns in table x. Simi-
larly, in order to fill hole ?2, we need to know the columns
in the intermediate table obtained using selection.

As this example illustrates, the vocabulary of first-order
functions that can be supplied as arguments to table trans-
formers often depends on the shapes (i.e., schemas) of the
other arguments of type tbl. For this reason, our sketch
completion algorithm synthesizes the program bottom-up,
evaluating terms of type tbl before synthesizing the other
arguments. Furthermore, as discussed in Section 1, the com-
pletion of program sketches in a bottom-up manner allows
us to perform partial evaluation, which in turn increases the
effectiveness of the deductive reasoning engine.

S = (?i : τi)
t ∈ Ω(τi,T, ∅)

DEDUCE(Sf [S@t/S], E) 6= ⊥
S@t ∈ Cv(S,Sf , E ,T)

(1)

S = (?i,tbl)@(x,T)

(S,T) ∈ CT(S,Sf , E)
(2)

S =?Xi (~H : tbl, ~H′ : τ) (τ 6= tbl)
(Pj ,Tj) ∈ CT(Hj ,Sf , E)

P ′j ∈ Cv(H′j ,Sf [~P/ ~H], E ,T1 × . . .× Tn)

DEDUCE(Sf [~P/ ~H, ~P ′/ ~H′], E) 6= ⊥
P∗ = S[~P/ ~H, ~P ′/ ~H′]

(P∗, [[P∗]]∂) ∈ CT(S,Sf , E)
(3)

(P,T) ∈ CT(S,S, E)

P ∈ FILLSKETCH(S, E)
(4)

Figure 14. Sketch completion rules.

Table-driven type inhabitation. At a high level, our sketch
completion procedure is type-directed and synthesizes an
argument of type τ by enumerating all inhabitants of τ .
However, as argued earlier, the valid inhabitants of type τ
are determined by a particular table. Hence, we consider
the table-driven variant of the standard type inhabitation
problem: That is, given a type τ and a concrete table T, what
are all valid inhabitants of τ with respect to the universe of
constants used in T?

We formalize this variant of the type inhabitation problem
using the inference rules shown in Figure 13. Specifically,
these rules derive judgments of the form Γ ` t ∈ Ω(τ,T)
where Γ is a type environment mapping variables to types.
The meaning of this judgment is that, under type environ-
ment Γ, term t is a valid inhabitant of type τ with respect to
table T. Observe that we need the type environment Γ due
to the presence of function types: That is, given a function
type τ1 → τ2, we need Γ to enumerate valid inhabitants of
τ2. Since the typing rules from Figure 13 resemble those for
the simply-typed lambda calculus, we do not explain them
in detail. The main difference is that constants of type cols
are drawn from lists of column names from the table schema,
and constants of type num and string are drawn from val-
ues in the table.

Example 11. Consider table T1 from Figure 8 and the
type environment Γ : {x 7→ string}. Assuming eq :
string × string → bool is a component in Λv , we
have eq(x,"Alice") ∈ Ω(bool,T1) using the App,
Const, Var rules. Similarly, λx.eq(x,"Bob") is also a valid
inhabitant of string→ bool with respect to T1.

Sketch completion algorithm. Our sketch completion pro-
cedure is described using the inference rules shown in Fig-
ure 14. As mentioned previously, the algorithm is bottom-up
and first synthesizes all arguments of type tbl before syn-

T3

id name age

2 Bob 18
3 Tom 12

T4

id name age GPA

2 Bob 18 3.2

Figure 15. Tables for Example 12

thesizing other arguments. Given sketch S and example E ,
FILLSKETCH(S, E) returns a set of hypotheses representing
complete well-typed programs that are valid with respect to
our deduction system.

The first rule in Figure 14 corresponds to a base case of
the FILLSKETCH procedure and is used for completing hy-
potheses that are not of type tbl. Here, S represents a sub-
part of the sketch that we want to complete, T is the table that
should be used in completing S, and Sf is the full sketch.
Since S represents an unknown expression of type τi, we
use the type inhabitation rules from Figure 13 to find a well-
typed instantiation t of τi with respect to table T. Given com-
pletion t of ?i, the full sketch now becomes Sf [S@t/S], and
we use the deduction system to check whether the new hy-
pothesis is valid. Since our deduction procedure uses partial
evaluation, we may now be able to obtain a concrete table
for some part of the sketch, thereby enhancing the power of
deductive reasoning.

The second rule from Figure 14 is also a base case of the
FILLSKETCH procedure. Since any leaf ?i of type tbl is
already bound to some input variable x in the sketch, there
is nothing to complete; hence, we just return S itself.

Rule (3) corresponds to the recursive step of the FILLS-
KETCH procure and is used to complete a sketch with top-
most component χ. Specifically, consider a sketch of the
form ?χi (~H, ~H′) where ~H denotes arguments of type tbl
and ~H′ represents first-order functions. Since the vocabulary
of ~H′ depends on the completion of ~H (as explained ear-
lier), we first recursively synthesize ~H and obtain a set of
complete programs ~P , together with their partial evaluation
T1, . . . ,Tn. Now, observe that eachH′j ∈ ~H′ can refer to any
of the columns in T1× ...×Tn; hence we recursively synthe-
size the remaining arguments ~H′ using table T1 × ... × Tn.
Now, suppose that the hypotheses ~H and ~H′ are completed
using terms ~P and ~P ′ respectively, and the new (partially
filled) sketch is now Sf [~P/ ~H, ~P ′/ ~H′]. Since there is an op-
portunity for rejecting this partially filled sketch, we again
check whether Sf [~P/ ~H, ~P ′/ ~H′] is consistent with the input-
output examples using deduction.

Example 12. Consider hypothesis H from Figure 6, the
input table T1 from Figure 8, and the output table T3

from Figure 15. We can successfully convert this hypothesis
into the sketch λx.?π0 (?σ1 (?3@(x,T1), ?4), ?2). Since FILLS-
KETCH is bottom-up, it first tries to fill hole ?4. In this case,
suppose that we try to instantiate hole ?4 with the predi-
cate age > 12 using rule (1) from Figure 14. However,
when we call DEDUCE on the partially-completed sketch

λx.?π0 (?σ1 (?3@(x,T1), age > 12), ?2), ?1 is refined as T4 in
Figure 15 and we obtain the following constraint:

?1.row <?3.row ∧ ?1.col =?3.col ∧?0.row =?1.row ∧
?0.col <?1.col ∧ x1 =?3 ∧ x1.row = 3 ∧ x1.col = 4 ∧

y =?0 ∧ y.row = 2 ∧ y.col = 3 ∧ ?1.col = 4 ∧ ?1.row = 1

Note that the last two conjuncts (underlined) are obtained
using partial evaluation. Since this formula is unsatisfiable,
we can reject this hypothesis without having to fill hole ?2.

8. Implementation
We have implemented our synthesis algorithm in a tool
called MORPHEUS, written in C++. MORPHEUS uses the
Z3 SMT solver [8] with the theory of Linear Integer Arith-
metic for checking the satisfiability of constraints generated
by our deduction engine.

Recall from Section 5 that MORPHEUS uses a cost model
for picking the “best” hypothesis from the worklist. In-
spired by previous work on code completion [28], we use
a cost model based on a statistical analysis of existing code.
Specifically, MORPHEUS analyzes existing code snippets
that use components from ΛT and represents each snippet
as a ‘sentence’ where ‘words’ correspond to components in
ΛT. Given this representation, MORPHEUS uses the 2-gram
model in SRILM [34] to assign a score to each hypothe-
sis. Specifically, we train our language model by collecting
approximately 15,000 code snippets from Stackoverflow us-
ing the search keywords tidyr and dplyr. For each code
snippet, we ignore its control flow and represent it using a
“sentence” where each “word” corresponds to an API call.
Based on this training data, the hypotheses in the worklistW
from Algorithm 1 are then ordered using the scores obtained
from the n-gram model.

Following the Occam’s razor principle, MORPHEUS ex-
plores hypotheses in increasing order of size. However, if
the size of the correct hypothesis is a large number k, MOR-
PHEUS may end up exploring many programs before reach-
ing length k. In practice, we have found that a better strat-
egy is to exploit the inherent parallelism of our algorithm.
Specifically, MORPHEUS uses multiple threads to search for
solutions of different sizes and terminates as soon as any
thread finds a correct solution.

9. Evaluation
To evaluate our method, we collected 80 data preparation
tasks, all of which are drawn from discussions among R
users on Stackoverflow. The MORPHEUS project webpage
[4] contains (i) the Stackoverflow post for each benchmark,
(ii) an input-output example, and (iii) the solution synthe-
sized by MORPHEUS.

Our evaluation aims to answer the following questions:

Q1. Can MORPHEUS successfully automate real-world data
preparation tasks and what is its running time?

Q2. How big are the benefits of SMT-based deduction and
partial evaluation in the performance of MORPHEUS?

Q3. How complex are the data preparation tasks that can be
successfully automated using MORPHEUS?

Q4. Are there existing synthesis tools that can also automate
the data preparation tasks supported by MORPHEUS?

To answer these questions, we performed a series of ex-
periments on the 80 data preparation benchmarks, using the
input-output examples provided by the authors of the Stack-
overflow posts. In these experiments, we use the table trans-
formation components provided by two popular table ma-
nipulation libraries, namely tidyr and dplyr. The value
transformers we use in our evaluation include standard com-
parison operators such as < , > as well as aggregate functions
like MEAN and SUM. In total, our experiments make use of
a total of 20 different components. All experiments are con-
ducted on an Intel Xeon(R) computer with an E5-2640 v3
CPU and 32G of memory, running the Ubuntu 16.04 operat-
ing system and using a timeout of 5 minutes.

Summary of results. The results of our evaluation are
summarized in Figure 16. Here, the “Description” column
provides a brief English description of each category, and
the column “#” shows the number of benchmarks in each
category. The “No deduction” column indicates the run-
ning time of a version of MORPHEUS that uses purely enu-
merative search without deduction. (This basic version still
uses the statistical analysis described in Section 8 to choose
the “best” hypothesis.) The columns labeled “Spec 1” and
“Spec 2” show variants of MORPHEUS using two different
component specifications. Specifically, Spec 1 is less precise
and only constrains the relationship between the number of
rows and columns, as shown in Table 1. On the other hand,
Spec 2 is strictly more precise than Spec 1 and also uses other
information, such as cardinality and number of groups.

Performance. As shown in Figure 16, the full-fledged
version of MORPHEUS (using the more precise component
specifications) can successfully synthesize 78 out of the 80
benchmarks and times out on only 2 problems. Hence, over-
all, MORPHEUS achieves a success rate of 97.5% within a
5-minute time limit. MORPHEUS’s median running time on
these benchmarks is 3.59 seconds, and 86.3% of the bench-
marks can be synthesized within 60 seconds. However, it is
worth noting that running time is actually dominated by the
R interpreter: MORPHEUS spends roughly 68% of the time
in the R interpreter, while using only 15% of its running time
to perform deduction (i.e., solve SMT formulas). Since the
overhead of the R interpreter can be significantly reduced
with sufficient engineering effort, we believe there is con-
siderable room for improving MORPHEUS’s running time.
However, even in its current form, these results show that
MORPHEUS is practical enough to automate a diverse class
of data preparation tasks within a reasonable time limit.

Category Description #
No deduction Spec 1 Spec 2

#Solved Time #Solved Time #Solved Time

C1
Reshaping dataframes from either “long” to
“wide” or “wide” to “long”

4 2 198.14 4 15.48 4 6.70

C2
Arithmetic computations that produce values
not present in the input tables

7 6 5.32 7 1.95 7 0.59

C3
Combination of reshaping and string manip-
ulation of cell contents

34 28 51.01 31 6.53 34 1.63

C4 Reshaping and arithmetic computations 14 9 162.02 10 90.33 12 15.35

C5
Combination of arithmetic computations
and consolidation of information from mul-
tiple tables into a single table

11 7 8.72 10 3.16 11 3.17

C6
Arithmetic computations and string manipu-
lation tasks

2 1 280.61 2 49.33 2 3.03

C7 Reshaping and consolidation tasks 1 0 7 1 135.32 1 130.92

C8
Combination of reshaping, arithmetic com-
putations and string manipulation

6 1 7 3 198.42 6 38.42

C9
Combination of reshaping, arithmetic com-
putations and consolidation

1 0 7 0 7 1 97.3

Total 80
54

95.53
68

8.57
78

3.59
(67.5%) (85.0%) (97.5%)

Figure 16. Summary of experimental results. All times are median in seconds and 7 indicates a timeout (> 5 minutes).

0 20 40 60 80

0

1,000

2,000

3,000

4,000

Benchmarks

Ti
m

e

No deduction
Spec 1 (no p. eval)
Spec 2 (no p. eval)
Spec 1 (p. eval)
Spec 2 (p. eval)

Figure 17. Cumulative running time of MORPHEUS

Impact of deduction. As Figure 16 shows, deduction has
a huge positive impact on the algorithm. The basic version
of MORPHEUS that does not perform deduction times out
on 32.5% of the benchmarks and achieves a median run-
ning time of 95.53 seconds. On the other hand, if we use the
coarse specifications given by Spec 1, we already observe a
significant improvement. Specifically, using Spec 1, MOR-
PHEUS can successfully solve 68 out of the 80 benchmarks,
with a median running time of 8.57 seconds. These results
show that even coarse and easy-to-write specifications can
have a significant positive impact on synthesis.

Impact of partial evaluation. Figure 17 shows the cumu-
lative running time of MORPHEUS with and without partial
evaluation. Partial evaluation significantly improves the per-
formance of MORPHEUS, both in terms of running time and
the number of benchmarks solved. In particular, without par-

no-lmodel lmodel
0

20

40

60

80

100
Pe

rc
en

ta
ge

No deduction Spec 2

Figure 18. Impact of language model

tial evaluation, MORPHEUS can only solve 62 benchmarks
with median running time of 34.75 seconds using Spec 1 and
64 benchmarks with median running time of 17.07 seconds
using Spec 2. When using partial evaluation, MORPHEUS
can prune 72% of the partial programs without having to fill
all holes in the sketch, thereby resulting in significant per-
formance improvement.

Impact of language model. As described in Section 8,
MORPHEUS uses a statistical language model (namely 2-
grams) for choosing the most promising hypothesis in its
worklist. Even though the idea of using statistical language
models is not a contribution of this paper and is inspired
by the prior work of Raychev et al. [28], we nevertheless
evaluate its impact on our benchmark set consisting of var-
ious data preparation tasks. Specifically, Figure 18 shows
the percentage of benchmarks solved by MORPHEUS with
and without a language model for ordering the hypotheses.
As shown in Figure 18, the use of the language model has
a significant positive impact on the performance of MOR-
PHEUS. Specifically, while MORPHEUS can solve 97.5% of

R SQL
0

20

40

60

80

100
Pe

rc
en

ta
ge

SQLSYNTHESIZER MORPHEUS

Figure 19. Comparison with SQLSYNTHESIZER

the benchmarks using the statistical language model, it is
only able to solve 76.25% of the benchmarks without the
2-gram model. However, it is worth noting that the statisti-
cal language model alone is not sufficient for solving many
of our benchmarks. In particular, if we disable the deduc-
tive reasoning capabilities of MORPHEUS, we can only solve
67.5% of the benchmarks. Furthermore, MORPHEUS can
only solve 28.75% of the benchmarks if we disable both de-
duction as well as the statistical language model.

Complexity of benchmarks. To evaluate the complexity
of tasks that MORPHEUS can handle, we conducted a small
user study involving 9 participants. Of the participants, four
are senior software engineers at a leading data analytics
company and do data preparation “for a living”. The remain-
ing 5 participants are proficient R programmers at a univer-
sity and specialize in statistics, business analytics, and ma-
chine learning. We chose 5 representative examples from our
80 benchmarks and asked the participants to solve as many
of them as possible within one hour. These benchmarks be-
long to four categories (C2, C3, C4, C7) and take between
0.22 and 204.83 seconds to be solved by MORPHEUS.

In our user study, the average participant completed 3
tasks within the one-hour time limit; however, only 2 of these
tasks were solved correctly on average. These results suggest
that our benchmarks are challenging even for proficient R
programmers and expert data analysts.

Comparison with λ2. To demonstrate the advantages of
our proposed approach over previous component-based syn-
thesis techniques, we compared MORPHEUS with λ2 [10],
which is a general-purpose tool for synthesizing higher-
order functional programs over data structures.

Since λ2 does not have built-in support for tables, we
evaluated λ2 on the benchmarks from Figure 16 by repre-
senting each table as a list of lists. Even though we confirmed
that λ2 can synthesize very simple table transformations in-
volve projection and selection, it was not able to success-
fully synthesize any of the benchmarks used in our evalu-
ation. Upon further inspection, we believe that λ2 fails to
synthesize many of our benchmarks for two reasons: First,
hypotheses in λ2 are restricted to be of the form λx. F e x,
where F is a higher-order combinator, e is an expression
and x is the input. However, many of our benchmarks re-

quire more general hypotheses of the form λx.F e1 e2 where
e1, e2 are arbitrary expressions. Furthermore, λ2 can only
perform deduction for a built-in set of higher-order combi-
nators for which it is possible to infer concrete input-output
examples for the sub-components. However, many of the
benchmarks used in our evaluation are difficult to express
concisely using the set of combinators supported by λ2.

Comparison with SQLSynthesizer. Since MORPHEUS is a
general tool that can be used to synthesize many kinds of
table transformations, we also compare it against SQLSYN-
THESIZER, which is a specialized tool for synthesizing SQL
queries from examples [37]. To compare MORPHEUS with
SQLSYNTHESIZER, we used two different sets of bench-
marks. First, we evaluated SQLSYNTHESIZER on the 80
data preparation benchmarks from Figure 16. Note that some
of the data preparation tasks used in our evaluation cannot be
expressed using SQL, and therefore fall beyond the scope of
a tool like SQLSYNTHESIZER. Among our 80 benchmarks,
SQLSYNTHESIZER was only able to successfully solve one.

To understand how MORPHEUS compares with SQL-
SYNTHESIZER on a narrower set of table transformation
tasks, we also evaluated both tools on the 28 benchmarks
used in evaluating SQLSYNTHESIZER [37]. To solve these
benchmarks using MORPHEUS, we used the same input-
output tables as SQLSYNTHESIZER and used a total of eight
higher-order components that are relevant to SQL. As shown
in Figure 19, MORPHEUS also outperforms SQLSYNTHE-
SIZER on these benchmarks. In particular, MORPHEUS can
solve 96.4% of the SQL benchmarks with a median running
time of 1 second whereas SQLSYNTHESIZER can solve
only 71.4% with a median running time of 11 seconds.

10. Related Work
In this section, we compare and contrast our approach with
prior synthesis techniques.

PBE for table transformations. This paper is related to
a line of work on programming-by-example (PBE) [5, 6,
10, 12, 17, 21, 22, 24, 25, 27, 36]. Of particular relevance
are PBE techniques that focus on table transformations [6,
17, 22, 37]. Among these techniques, FLASHEXTRACT and
FLASHRELATE address the specific problem of extracting
structured data from spreadsheets and do not consider a
general class of table transformations. More closely related
are Harris and Gulwani’s work on synthesis of spreadsheet
transformations [17] and Zhang et al.’s work on synthesizing
SQL queries [37]. Our approach is more general than these
methods in that they use DSLs with a fixed set of primi-
tive operations (components), whereas our approach takes a
set of components as a parameter. For instance, Zhang et
al. cannot synthesize programs that perform table reshaping
while Harris et al. supports data reshaping, but not computa-
tion or consolidation. Hence, these approaches cannot auto-
mate many of the data preparation tasks that we consider.

Data wrangling. Another term for data preparation is “data
wrangling”, and prior work has considered methods to facil-
itate such tasks. For instance, WRANGLER is an interactive
visual system that aims to simplify data wrangling [15, 20].
OPENREFINE is a general framework that helps users per-
form data transformations and clean messy data. Tools such
as WRANGLER and OPENREFINE facilitate a larger class of
data wrangling tasks than MORPHEUS, but they do not auto-
matically synthesize table transformations from examples.

Synthesis using deduction and search. Our work builds on
recent synthesis techniques that combine enumeration and
deduction [5, 10, 22, 24, 36]. The closest work in this space
is λ2, which synthesizes functional programs using deduc-
tion and cost-directed enumeration [10]. Like λ2, we differ-
entiate between higher-order and first-order combinators and
use deduction to prune partial programs. However, the key
difference from prior techniques is that our deduction capa-
bilities are not customized to a specific set of components.
For example, λ2 only supports a fixed set of higher-order
combinators and uses “baked-in” deductive reasoning to re-
ject partial programs. Furthermore, as described in Section 9,
λ2 restricts hypotheses to be of a certain shape and can only
perform deduction in cases where it is possible to infer con-
crete input-output examples for the nested hypotheses. In
contrast, our approach supports any higher-order component
and can utilize arbitrary first-order specifications to reject
hypotheses using SMT solving.

Also related is FLASHMETA, which gives a generic
method for constructing example-driven synthesizers for
user-defined DSLs [27]. The methodology we propose in
this paper is quite different from FLASHMETA. FLASH-
META uses version space algebras to represent all programs
consistent with the examples and employs deduction to de-
compose the synthesis task. In contrast, we use enumerative
search to find one program that satisfies the examples and
use SMT-based deduction to reject partial programs.

Component-based synthesis. Component-based synthesis
refers to generating (straight-line) programs from a set of
components, such as methods provided by an API [9, 14,
18, 19, 23, 30]. Some of these efforts [14, 18] use an SMT-
solver to search for a composition of components. In con-
trast, our approach uses an SMT-solver as a pruning tool
in enumerative search and does not require precise specifi-
cations of components. Another related work in this space
is SYPET [9], which searches for well-typed programs us-
ing a Petri net representation. Similar to this work, SYPET
can also work with any set of components and decomposes
synthesis into two separate sketch generation and sketch
completion phases. However, both the application domains
(Java APIs vs. table transformations) and the underlying
techniques (Petri net reachability vs. SMT-based deduc-
tion) are very different. Finally, another related approach
is Bigλ [30], which can synthesize non-trivial data-parallel
programs using a set of pre-defined components. However,

unlike MORPHEUS, Bigλ does not incorporate deductive
reasoning to prune the search space.

Synthesis as type inhabitation. Our approach also resem-
bles prior work that has framed synthesis as type inhabita-
tion [11, 16, 24, 26]. Of these approaches, INSYNTH [16] is
type-directed rather than example-directed. MYTH [24] and
its successors [11] cast type- and example-directed synthesis
as type inhabitation in a refinement type system. In contrast
to these techniques, our approach only enumerates type in-
habitants in the context of sketch completion and uses table
contents to finitize the universe of constants.

Another work that is closely related to MORPHEUS is
SYNQUID [26], which takes advantage of recent advances
in polymorphic refinement types [29, 35]. Similar to our ap-
proach, SYNQUID also adopts a type-directed SMT-based
deduction system to prune its search space. However, un-
like our system which can work with any incomplete (over-
approximate) specification, SYNQUID requires precise spec-
ifications of the underlying components. In other words,
SYNQUID fails to synthesize the desired program if the com-
ponent specifications are over-approximate. Since it is diffi-
cult to write precise specifications of many library methods,
we believe that MORPHEUS’s ability to perform lightweight
deduction using incomplete specifications can be useful in
many different contexts.

Sketch. In program sketching, the user provides a partial
program containing holes, which are completed by the syn-
thesizer in a way that respects user-provided invariants (e.g.,
assertions) [31–33]. While we also use the term “sketch”
to denote partial programs with unknown expressions, the
holes in our program sketches can be arbitrary expres-
sions over first-order components. In contrast, holes in the
SKETCH system typically correspond to constants [33]. Fur-
thermore, our approach automatically generates program
sketches rather than requiring the user to provide the sketch.

11. Conclusion
We have presented a new component-based synthesis algo-
rithm that combines type-directed enumerative search with
lightweight SMT-based deduction and partial evaluation.
Given a set of components equipped with over-approximate
logical specifications, our approach automatically infers log-
ical specifications of partial programs and uses SMT-based
reasoning to prune the search space. Our approach further
increases the power of its deductive reasoning engine by
employing partial evaluation. We have applied the proposed
ideas to automate a large class of data preparation tasks that
involve table consolidation and reshaping. As shown in our
experimental evaluation, our tool, MORPHEUS, can auto-
mate challenging data wrangling tasks that are difficult even
for proficient R programmers. Our tool is publicly avail-
able [4] and will also be released as an RStudio plug-in.

References
[1] Motivating Example 1. http://stackoverflow.

com/questions/30399516/complex-data-
reshaping-in-r. Accessed 27-Mar-2017.

[2] Motivating Example 2. http://stackoverflow.com/
questions/33207263/finding-proportions-
in-flights-dataset-in-r. Accessed 27-Mar-2017.

[3] Motivating Example 3. http://stackoverflow.
com/questions/32875699/how-to-combine-
two-data-frames-in-r-see-details. Accessed
27-Mar-2017.

[4] Morpheus. https://utopia-group.github.io/
morpheus/. Accessed 27-Mar-2017.

[5] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive
Program Synthesis. In Proc. International Conference on
Computer Aided Verification, pages 934–950. Springer, 2013.

[6] D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. FlashRe-
late: extracting relational data from semi-structured spread-
sheets using examples. In Proc. Conference on Programming
Language Design and Implementation, pages 218–228. ACM,
2015.

[7] T. Dasu and T. Johnson. Exploratory data mining and data
cleaning, volume 479. John Wiley & Sons, 2003.

[8] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proc. Tools and Algorithms for Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[9] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. Reps.
Component-Based Synthesis for Complex APIs. In Proc.
Symposium on Principles of Programming Languages. ACM,
2017.

[10] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data
structure transformations from input-output examples. In
Proc. Conference on Programming Language Design and Im-
plementation, pages 229–239. ACM, 2015.

[11] J. Frankle, P. Osera, D. Walker, and S. Zdancewic. Example-
directed synthesis: a type-theoretic interpretation. In Proc.
Symposium on Principles of Programming Languages, pages
802–815. ACM, 2016.

[12] S. Gulwani. Automating string processing in spreadsheets us-
ing input-output examples. In Proc. Symposium on Principles
of Programming Languages, pages 317–330. ACM, 2011.

[13] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In ACM SIGPLAN Notices,
volume 46, pages 317–330. ACM, 2011.

[14] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In Proc. Conference on Programming
Language Design and Implementation, pages 62–73. ACM,
2011.

[15] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive
Wrangling: Mixed-initiative End-user Programming of Data
Transformation Scripts. In Proc. Symposium on User Inter-
face Software and Technology, pages 65–74. ACM, 2011.

[16] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete
completion using types and weights. In Proc. Conference on

Programming Language Design and Implementation, pages
27–38. ACM, 2013.

[17] W. R. Harris and S. Gulwani. Spreadsheet table transforma-
tions from examples. In Proc. Conference on Programming
Language Design and Implementation, pages 317–328. ACM,
2011.

[18] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In Proc. International
Conference on Software Engineering, pages 215–224. IEEE,
2010.

[19] T. A. Johnson and R. Eigenmann. Context-sensitive domain-
independent algorithm composition and selection. In Proc.
Conference on Programming Language Design and Imple-
mentation, pages 181–192. ACM, 2006.

[20] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In Proc. International Conference on Human Factors in Com-
puting Systems, pages 3363–3372. ACM, 2011.

[21] E. Kitzelmann. A combined analytical and search-based ap-
proach for the inductive synthesis of functional programs.
Künstliche Intelligenz, 25(2):179–182, 2011.

[22] V. Le and S. Gulwani. FlashExtract: a framework for data
extraction by examples. In Proc. Conference on Programming
Language Design and Implementation, pages 542–553. ACM,
2014.

[23] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. In Proc. Confer-
ence on Programming Language Design and Implementation,
pages 48–61. ACM, 2005.

[24] P.-M. Osera and S. Zdancewic. Type-and-example-directed
program synthesis. In Proc. Conference on Programming
Language Design and Implementation, pages 619–630. ACM,
2015.

[25] D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-
driven synthesis. In Proc. Conference on Programming Lan-
guage Design and Implementation, page 43. ACM, 2014.

[26] N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program syn-
thesis from polymorphic refinement types. In Proc. Confer-
ence on Programming Language Design and Implementation,
pages 522–538. ACM, 2016.

[27] O. Polozov and S. Gulwani. FlashMeta: A framework for in-
ductive program synthesis. In Proc. International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 107–126. ACM, 2015.

[28] V. Raychev, M. Vechev, and E. Yahav. Code completion
with statistical language models. In Proc. Conference on
Programming Language Design and Implementation, pages
419–428. ACM, 2014.

[29] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types.
In Proc. Conference on Programming Language Design and
Implementation, pages 159–169. ACM, 2008.

[30] C. Smith and A. Albarghouthi. Mapreduce program synthesis.
In Proc. Conference on Programming Language Design and
Implementation, pages 326–340. ACM, 2016.

http://stackoverflow.com/questions/30399516/complex-data-reshaping-in-r
http://stackoverflow.com/questions/30399516/complex-data-reshaping-in-r
http://stackoverflow.com/questions/30399516/complex-data-reshaping-in-r
http://stackoverflow.com/questions/33207263/finding-proportions-in-flights-dataset-in-r
http://stackoverflow.com/questions/33207263/finding-proportions-in-flights-dataset-in-r
http://stackoverflow.com/questions/33207263/finding-proportions-in-flights-dataset-in-r
http://stackoverflow.com/questions/32875699/how-to-combine-two-data-frames-in-r-see-details
http://stackoverflow.com/questions/32875699/how-to-combine-two-data-frames-in-r-see-details
http://stackoverflow.com/questions/32875699/how-to-combine-two-data-frames-in-r-see-details
https://utopia-group.github.io/morpheus/
https://utopia-group.github.io/morpheus/

[31] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu.
Programming by sketching for bit-streaming programs. In
Proc. Conference on Programming Language Design and Im-
plementation, pages 281–294. ACM, 2005.

[32] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 404–
415. ACM, 2006.

[33] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A.
Saraswat, and S. A. Seshia. Sketching stencils. In Proc. Con-
ference on Programming Language Design and Implementa-
tion, pages 167–178. ACM, 2007.

[34] A. Stolcke. SRILM - an extensible language modeling toolkit.
In Proc. International Conference on Spoken Language Pro-
cessing, pages 901–904. ISCA, 2002.

[35] P. Vekris, B. Cosman, and R. Jhala. Refinement types for
typescript. In Proc. Conference on Programming Language
Design and Implementation, pages 310–325. ACM, 2016.

[36] N. Yaghmazadeh, C. Klinger, I. Dillig, and S. Chaudhuri. Syn-
thesizing transformations on hierarchically structured data. In
Proc. Conference on Programming Language Design and Im-
plementation, pages 508–521. ACM, 2016.

[37] S. Zhang and Y. Sun. Automatically synthesizing sql queries
from input-output examples. In Proc. International Confer-
ence on Automated Software Engineering, pages 224–234.
IEEE, 2013.

Appendix A: Specifications of high-order
components
In this section, we present two specifications used in Sec-
tion 9. Specifically, as it is shown in table 2, Spec 1 only
constrains the relationship between the number of rows
and columns. For instance, T.col represents the number of
columns and T.row represents the number of rows of table T.

On the other hand, as shown in Table 3, Spec 2 is strictly
more precise than Spec 1. In addition to the rows and
columns in Spec 1, Spec 2 also uses other information, such
as cardinality and number of groups. For instance, T.group
denotes the number of groups in table T and T.newCols de-
notes the cardinality of new column names in table T with
respect to the input table. Finally, T.newVals represents the
cardinality of new values in table T with respect to the input
table. Note that the new values includes both new column
names as well as cell values in T.

Example 13. Recall the following input table from Exam-
ple 1:

id year A B

1 2007 5 10
2 2009 3 50
1 2007 5 17
2 2009 6 17

For this input table, we use Sh1 and Sc1 to represent the
set of column names and the set of values, respectively. Here
Sh1 = {id,year,A,B} and Sc1 = {id,year,A,B,1,2,
3,5,6,10,50,17,2007,2009}. Using Sh1 and Sc1 we
can compute the values of Tin.newCols and Tin.newVals:

Tin.newCols = |Sh1 − Sh1| = 0
Tin.newVals = |Sc1 − Sc1| = 0

Note that the number of groups in the input table is initial-
ized to 1.

For the output table from Example 1 we can compute the
same properties in a similar fashion:

id A 2007 B 2007 A 2009 B 2009

1 5 10 5 17
2 3 50 6 17

Let Sh2 and Sc2 represent the set of column names and
the set of values, respectively. Since Sh2 = {id,A 2007,

B 2007,A 2009,B 2009} and Sc2 = {id,A 2007,B 2007,

A 2009,B 2009,1,2,3,5,6,10,50,17}, then we can
compute Tout.newCols and Tout.newVals as follows:

Tout.newCols = |Sh2 − Sh1| = 4
Tout.newVals = |Sc2 − Sc1| = 4

Finally, the number of groups in the output table is set to
a fresh variable k where k > 0, since we can apply zero or
more group by operators before the output table.

Now given the following hypothesisH:

?spread0 : tbl

?1 : tbl@(x1,T) ?2 : cols

if we choose the specification of spread from Table 2,
the constraint generation function Φ(H) yields the following
Presburger arithmetic formula ψ:

?0.row ≤?1.row ∧ ?0.col ≥?1.col ∧
?0.row = 2 ∧ ?0.col = 5 ∧ ?1.row = 4 ∧ ?1.col = 4

Since formula ψ is satisfiable, MORPHEUS will continue to
explore possible completions of hypothesis H even though
none of them will lead to a correct solution.

On the other hand, if we choose a more precise specifica-
tion of spread presented on Table 3, the deduction system
can prune this incorrect hypothesis H. Here is the new con-
straint ψ′ based on Spec 2:

?0.row ≤?1.row ∧ ?0.col ≥?1.col ∧
?0.row = 2 ∧ ?0.col = 5 ∧ ?1.row = 4 ∧ ?1.col = 4 ∧

?0.group =?1.group ∧ ?0.newVals ≤?1.newVals ∧
?0.newCols ≤?1.newVals∧ ?0.newCols = 4

?1.newVals = 0 ∧ ?1.newCols = 0 ∧ ?0.newVals = 4 ∧
?1.group = 1 ∧ ?0.group = k ∧ k > 1

Lib Component Description Specification

tid
yr

spread Spread a key-value pair across multiple columns. Tout.row ≤ Tin.row
Tout.col ≥ Tin.col

gather Takes multiple columns and collapses into key-
value pairs, duplicating all other columns as needed.

Tout.row ≥ Tin.row
Tout.col ≤ Tin.col

separate Separate one column into multiple columns. Tout.row = Tin.row
Tout.col = Tin.col + 1

unite Unite multiple columns into one. Tout.row = Tin.row
Tout.col = Tin.col− 1

dp
ly

r

select Project a subset of columns in a data frame. Tout.row = Tin.row
Tout.col < Tin.col

filter Select a subset of rows in a data frame. Tout.row < Tin.row
Tout.col = Tin.col

summarise Summarise multiple values to a single value. Tout.row ≤ Tin.row
Tout.col ≤ Tin.col + 1

group by Group a table by one or more variables. Tout.row = Tin.row
Tout.col = Tin.col

mutate Add new variables and preserves existing. Tout.row = Tin.row
Tout.col = Tin.col + 1

inner join Perform inner join on two tables.

Min(T1
in.row, T2

in.row) ≤
Tout.row ≤

Max(T1
in.row, T2

in.row)
Tout.col ≤ T1

in.col+T2
in.col−1

Table 2. Specifications 1 of high-order components

The above constraint ψ′ is unsatisfiable because of the
underlined conjuncts. As a result the deduction will reject
hypothesisH without completing it.

Lib Component Description Specification

tid
yr

spread Spread a key-value pair across multiple columns.

Tout.group = Tin.group
Tout.newVals ≤ Tin.newVals
Tout.newCols ≤ Tin.newVals

Tout.row ≤ Tin.row ; Tout.col ≥ Tin.col

gather Takes multiple columns and collapses into key-
value pairs, duplicating all other columns as needed.

Tout.group = Tin.group
Tout.newVals ≤ Tin.newVals + 2
Tout.newCols ≤ Tin.newCols + 2
Tout.row ≥ Tin.row ; Tout.col ≤ Tin.col

separate Separate one column into multiple columns.

Tout.group = Tin.group
Tout.newVals ≥ Tin.newVals + 2
Tout.newCols ≤ Tin.newCols + 2

Tout.row = Tin.row ; Tout.col = Tin.col + 1

unite Unite multiple columns into one.

Tout.group = Tin.group
Tout.newVals ≥ Tin.newVals + 1
Tout.newCols ≤ Tin.newCols + 1

Tout.row = Tin.row ; Tout.col = Tin.col− 1

dp
ly

r

select Project a subset of columns in a data frame.

Tout.group = Tin.group
Tout.newVals ≤ Tin.newVals
Tout.newCols ≤ Tin.newCols

Tout.row = Tin.row ; Tout.col < Tin.col

filter Select a subset of rows in a data frame.

Tout.group = Tin.group
Tout.newVals ≤ Tin.newVals
Tout.newCols = Tin.newCols

Tout.row < Tin.row ; Tout.col = Tin.col

summarise Summarise multiple values to a single value.

Tout.group = Tin.group = Tout.row
Tout.newVals ≤ Tin.newVals + Tin.group + 1

0 < Tout.newCols ≤ Tin.newCols + 1
Tout.row ≤ Tin.row Tout.col ≤ Tin.col + 1

group by Group a table by one or more variables.

Tout.group ≥ Tin.group
Tout.newVals = Tin.newVals
Tout.newCols = Tin.newCols

Tout.row = Tin.row ; Tout.col = Tin.col

mutate Add new variables and preserves existing.

Tout.group = Tin.group
Tout.newCols = Tin.newCols + 1

Tin.newVals < Tout.newVals ≤
Tin.newVals + Tin.row

Tout.row = Tin.row ; Tout.col = Tin.col + 1

inner join Perform inner join on two tables.

Tout.group = 1
Tout.newCols ≤ (T1

in.newCols + T2
in.newCols)

Tout.newVals ≤ (T1
in.newVals + T2

in.newVals)
Min(T1

in.row, T2
in.row) ≤ Tout.row ≤

Max(T1
in.row, T2

in.row)
Tout.col ≤ T1

in.col + T2
in.col− 1

Table 3. Specifications 2 of high-order components

	Introduction
	Motivating Examples
	Problem Formulation
	Hypotheses as Refinement Trees
	Synthesis Algorithm
	SMT-based Deduction
	Sketch Completion
	Implementation
	Evaluation
	Related Work
	Conclusion

